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Morse subsets of injective spaces are strongly contracting

Alessandro Sisto and Abdul Zalloum

Abstract. We show that a quasi-geodesic in an injective metric space is Morse if and only if it
is strongly contracting. Since mapping class groups and, more generally, hierarchically hyperbolic
groups act properly and coboundedly on injective metric spaces, we deduce various consequences
relating, for example, to growth tightness and genericity of pseudo-Anosovs/Morse elements.
Moreover, we show that injective metric spaces have the Morse local-to-global property and that
a non-virtually cyclic group acting properly and coboundedly on an injective metric space is acyl-
indrically hyperbolic if and only if contains a Morse ray. We also show that strongly contracting
geodesics of a space stay strongly contracting in the injective hull of that space.

1. Introduction

Hyperbolic-like directions

There are various notions that aim to capture the notion of “hyperbolic-like” directions in
a space or group (for sampling, see [1, 10, 16, 32, 35, 37]) meaning geodesics that behave
like geodesics in a hyperbolic space. The weakest such notion is that of a Morse geodesic,
while the strongest of these notions is that of a strongly contracting geodesic. The advant-
age of the former is that it is quasi-isometry invariant, while the latter has much stronger
consequences, for example, relating to acylindrical hyperbolicity [5,18], growth tightness
[2], growth rates of subgroups [28], and genericity of strongly contracting elements [38];
see the discussion below. Unfortunately, in general metric spaces, these two notions are
not equivalent, and in fact they are not even equivalent for Cayley graphs of mapping
class groups [33]. It is therefore desirable to identify classes of metric spaces where the
notions are equivalent, as is the case for CAT(0) spaces [8, 10] and 1-skeleta of CAT(0)
cube complexes [22].

Injective spaces

A metric space is said to be injective if any collection of pairwise intersecting balls have
a total intersection. A related notion is that of Helly graph, a graph where this prop-
erty is required to hold for combinatorial balls. Injectivity has drawn increasing interest
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in recent years and it is meant to capture some form of non-positive curvature. Indeed,
for example, these spaces admit bicombings with various desirable properties [14, 27].
Moreover, Helly groups, that is, groups acting properly and cocompactly on Helly graphs,
have many remarkable properties such as biautomaticity [9]. These groups form a large
class including cubulated groups, finitely presented graphical C(4)-T(4) small cancella-
tion groups [9], and weak Garside groups of finite type [25]. Injectivity has also played
a crucial role in the proof of semi-hyperbolicity of mapping class groups [24] (see also
[17]). Namely, Haettel–Hoda–Petyt showed that hierarchically hyperbolic groups, which
include mapping class groups (see [4] and references therein), admit proper cobounded
actions on injective metric spaces. Our main theorem is the following.

Theorem A. A subset Y of an injective metric spaceX is Morse if and only if it is strongly
contracting, quantitatively.

By “quantitatively” we mean that the contraction constant and the Morse gauge
determine each other. We note that since Helly graphs are coarsely dense in their injective
hulls (see [9, Proposition 3.12]), the theorem also holds for those.

A recent result related to Theorem A is that Morse elements are strongly contracting
in standard Cayley graphs of Garside groups of finite type modded out by their centres [7].

We note that Morseness for .9; 0/-quasi-geodesics actually suffices for strong contrac-
tion (see Corollary 3.5). Interestingly, this is better than the case of CAT.0/ spaces; see
the discussion below the aforementioned corollary.

Injective hulls

Before discussing consequences of our main theorem, we state another result which com-
pletes the picture of what happens when passing to the injective hull (but will not be
discussed further below). We recall that any metric space X embeds isometrically into a
canonical injective metric space E.X/ called its injective hull, which should be thought
of as the smallest injective space containing X . Theorem A implies that in order for a
geodesic ray 
 in X to be Morse in E.X/, the geodesic 
 needs to be strongly contract-
ing in X . Conversely, we show that if 
 is indeed strongly contracting in X , then it stays
strongly contracting in E.X/.

Theorem B. Let X be a geodesic metric space with injective hull e W E ! E.X/. Let

 � X be a strongly contracting geodesic. Then e.
/ is strongly contracting in E.X/,
quantitatively.

In other words, a Morse geodesic inX stays Morse inE.X/ if and only if 
 is strongly
contracting in X . We note that the same statement also holds for strongly contracting
subsets satisfying Gromov’s four-point condition (see Theorem 5.6). We note that this
stronger version implies the well-known fact that hyperbolic spaces are coarsely dense in
their injective hulls, see Corollary 5.7, which was first proven in [27].
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At this point a natural question arises, which is what happens to rays of X that are
Morse but not strongly contracting when passing to the injective hull E.X/. We do not
have a good guess for this, so we formulate the question vaguely.

Question 1. Let 
 � X be a Morse geodesic and let e W X ! E.X/ be the injective hull
of X . Does e.
/ retain any (weak) form of “hyperbolicity”?

Consequences for mapping class groups

We now point out various consequences of our main theorem when combined with known
results from the literature, in the context of mapping class groups. Analogous results also
hold for all hierarchically hyperbolic groups. We emphasise that contraction properties
weaker than strong contraction do not suffice for any of the applications below (quasi-
axes of pseudo-Anosov elements in Cayley graphs are known to satisfy a weaker form of
contraction [3]).

First of all, since mapping class groups act properly and coboundedly on injective met-
ric spaces, we obtain the first known geometric models for mapping class groups where
pseudo-Anosov elements have strongly contracting axes (where by geometric model we
mean a geodesic space being acted on properly and coboundedly, hence equivariantly
quasi-isometric to the given group).

Theorem C (Theorem A plus [24]). Each mapping class group G admits a proper
cobounded action on a metric space X such that the following hold:

(1) Morse and strongly contracting sets are equivalent in X .

(2) Pseudo-Anosov elements of G all have strongly contracting quasi-axes in X .

This theorem further highlights the significance of [24] and encourages further study
of injective metric spaces in light of their recent influence on geometric group theory. On
this note, we point out that although this may not be apparent from their construction,
the ideas behind recent work of [30] constructing hyperplanes and hyperbolic models
for CAT(0) spaces originate from the study of injective metric spaces and their d1-like
distance.

We remark that it was previously known that mapping class groups are quasi-isometric
to spaces where Morse subsets are strongly contracting, namely CAT(0) cube complexes
[29]. However, such a quasi-isometry is not equivariant as mapping class groups do not
act on these spaces.

On genericity of pseudo-Anosovs. A long-standing conjecture due to Thurston [19]
states that pseudo-Anosov elements are generic with respect to the counting measure in
each Cayley graph of a mapping class group G. Work of Yang [38] shows genericity of
strongly contracting elements under general conditions that apply to proper cobounded
actions with a strongly contracting element. Combining our main theorem with [24] and
[38], we get the following.
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Theorem D (Theorem A plus [24] plus [38]). Let G be a mapping class group and
let X be an injective space acted on properly and coboundedly by G. The collection of
pseudo-Anosov elements is generic with respect to the counting measures in balls of X .

Here, “genericity with respect to the counting measure in balls” is defined in a
natural way in terms of counting orbit points in balls of increasing radius (see [38,
Subsection 1.1]).

Although the space X from Theorem C is the first geometric model of the mapping
class group where the Morse and strongly contracting notions are equivalent, it is not the
first space where pseudo-Anosov elements are generic with respect to the counting meas-
ure, as Choi [11] showed that there are finite generating sets of any mapping class group
where pseudo-Anosov elements are generic with respect to the counting measure in that
Cayley graph.

Growth tightness. Another important consequence of the presence of strongly contract-
ing geodesics is related to growth tightness of the action. For word metrics, growth
tightness is a condition comparing growth rates of a given group with the growth rates of
its quotient, and it was originally introduced by de la Harpe and Grigorchuk as a scheme
to show that a given group is Hopfian [23]. Work of Arzhantseva, Cashen, and Tao [2]
generalises this notion to group actions, and they show that cobounded actions that admit
a strongly contracting element are growth tight. In [2, Question 3], the authors ask whether
the action of a mapping class group G on its Cayley graph(s) is growth tight. Combining
Theorem A with [24] and [2], we obtain the following.

Theorem E (Theorem A plus [24] plus [2]). Each mapping class group admits a
growth-tight proper cobounded action on a metric space.

Although Theorem E does not exactly answer their question, it does provide the first
geometric model for the mapping class group where the action is growth tight (note that
while the action of a mapping class group on the corresponding Teichmüller space with
the Teichmüller metric is growth tight [2], such an action is not cobounded).

Consequences for groups acting on injective spaces

We now discuss consequences of our main theorem for Helly groups and other groups
acting on injective metric spaces. We start with another large-scale geometric property of
injective metric spaces that we obtain, namely the Morse local-to-global property.

Morse local-to-global. The Morse local-to-global property was introduced in [34] with
the goal of generalising results and arguments about hyperbolic groups to more general
groups. Such spaces and groups have been proven to enjoy an abundance of desirable
properties such as the existence of an automatic structure for Morse geodesics [13, 26],
combination type theorems for stable subgroups [34], rationality of the growth of stable
subgroups [13], and some implications regarding the action of such groups on their Morse
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boundaries [13] (see [10, 12] for the notion of Morse boundary and [15, 37] for the
definition of a stable subgroup). Our second main theorem shows that any metric space
where the notions of Morse and strongly contracting are equivalent must have the Morse
local-to-global property.

Theorem F. If X is a metric space where Morse geodesics are strongly contracting
quantitatively, then X has the Morse local-global-property. In particular, injective metric
spaces have the Morse local-global-property.

Note that Theorem F gives another way of proving that CAT(0) spaces have the Morse
local-to-global property, a fact first proven in [34].

Acylindrical hyperbolicity. Strong contraction often is the key to using the machinery
of projection complexes from [5] (see also [6]). Indeed, in Subsection 4.2 we will use the
Morse local-to-global property to obtain a strongly contracting element, and then applying
the aforementioned machinery, we prove the following.

Theorem G. LetG be a group acting properly and coboundedly on an injective spaceX ,
and suppose that G is not virtually cyclic. Then G is acylindrically hyperbolic if and only
if it contains a Morse ray.

One reason of interest in this kind of statements lies in the fact that, while it is not
known whether being acylindrically hyperbolic is a quasi-isometry invariant, containing a
Morse ray is. Therefore, it is useful to know under what circumstances containing a Morse
ray is equivalent to being acylindrically hyperbolic. In particular, we obtain the following
corollary.

Corollary H. If G; H are quasi-isometric Helly groups, then G is acylindrically
hyperbolic if and only if H is.

This corollary is worth comparing to the analogous statement for groups acting on
CAT(0) cube complexes from [21].

Growth rates. Our final two consequences are about growth rates of groups acting on
injective metric spaces and their subgroups. Given an action of a group G on a metric
space and a subset A of G, the growth rate in X of A (if well defined) measures, roughly,
the exponential growth rate of the orbits of A in X . Recent work of Legaspi [28] provides
various interesting results regarding growth rates of groups admitting a proper action on a
metric spaceX with a strongly contracting element. Combining his work with Theorem A,
we get the following.

Theorem I (Theorem A plus [28]). Let G be a group admitting a proper cobounded
action on an injective metric space X . Assume further that G is not virtually cyclic and
that it contains a Morse ray. If H < G is an infinite-index quasi-convex subgroup of G,
then the growth rate in X of H is strictly smaller than the growth rate in X of G.
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In the context of groups acting properly and coboundedly on injective spaces, the
above theorem provides an analogue of [13, Theorem A], which states that the growth rate
of any stable subgroup of a virtually torsion-free Morse local-to-global group is strictly
smaller than that of the ambient group. An immediate consequence of Theorem I is the
following.

Corollary J. Let X be an injective metric space acted on properly and coboundedly by a
mapping class groupG and letH <G be a convex cocompact subgroup. Then the growth
rate in X of H is strictly smaller than the growth rate in X of G.

The above corollary is a companion result to [13, Corollary C], which shows the same
statement for the orbit of a convex cocompact subgroup in any Cayley graph of its ambient
mapping class group. It also relates to Gekhtman’s work who showed that the same result
holds for the action of a mapping class group on its Teichmüller space [20].

Outline

After some general preliminaries in Section 2, we prove Theorem A (=Theorem 3.4) in
Section 3. In Section 4, we prove the Morse local-to-global property, Theorem F (=Pro-
position 4.7), which we then use in the proof of Theorem G (=Corollary 4.8). Finally, in
Section 5, we prove a more general version of Theorem B, namely Theorem 5.6.

2. Preliminaries

We will use the notation B.x; r/ to denote the (closed) ball of radius r centred at x.

Definition 2.1 (Injective spaces). A metric space X is said to be injective if for any ¹xiº
in X and ¹riº 2 RC, we have

d.xi ; xj / � ri C rj for all i ¤ j H)
\
i

B.xi ; ri / ¤ ;:

Definition 2.2 (Geodesic bicombing). A geodesic bicombing on a metric space .X; d/ is
a map 
 W X � X � Œ0; 1�! X such that for any two distinct points x; y 2 X the map
Œ0; d.x; y/�! X given by

t 7! 
x;y

� t

d.x; y/

�
is a (unit-speed) geodesic, where 
x;y abbreviates the map 
.x; y; �/. A geodesic
bicombing 
 is said to be conical if for any x; y; x0; y0 2 X , and t 2 Œ0; 1�, we have

d.
x;y.t/; 
x0;y0.t// � .1 � t /d.
x;y.0/; 
x0;y0.0//C td.
x;y.1/; 
x0;y.1//:

It is said to be reversible if for any x;y 2 X , and t 2 Œ0; 1�, we have 
x;y.t/D 
y;x.1� t /.
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Proposition 2.3 ([27, Proposition 3.8]). Each injective metric space X admits a revers-
ible conical geodesic bicombing which is Isom.X/-invariant. In particular, every injective
metric space is geodesic.

Definition 2.4 (Projections). Given a subset Y of a metric space X and x 2 X , we define

�Y .x/ D ¹y 2 Y j d.x; y/ � d.x; Y /C 1º � Y:

The set �Y .x/ is called the coarse closest point projection of x to Y . For a subset B � X ,
we define �Y .B/ WD

S
x2B �Y .x/.

Definition 2.5 (Strongly contracting). A subset Y of a metric space X is said to be D-
strongly contracting if for each ball B disjoint from Y , we have diam.�Y .B// � D. It is
said to be strongly contracting if it is D-strongly contracting for some D.

We start with the following observation.

Lemma 2.6. Given a subset Y of a metric spaceX , x 2X , and a point p along a geodesic
from x to some y 2 �Y .x/, we have d.p; y/ � d.p; Y /C 1.

Proof. This follows from the following chain of inequalities which holds for any z 2 Y ,
and taking the infimum over all z:

d.x; Y / � .d.x; y/ � d.p; y//C d.p; z/ � d.x; Y /C 1 � d.p; y/C d.p; z/:

Definition 2.7 (Morse). Given a mapM W RC �RC! RC, a subset Y of a metric space
is said to beM -Morse if every .�; "/-quasi-geodesic ˇ with endpoints on Y remains in the
M.�; "/-neighbourhood of Y . A subset Y is said to be Morse if there exists some map M
such that Y is M -Morse. In this case, we call M a Morse gauge for Y .

We recall [31, Lemma 2.5] which roughly says that given a quasi-geodesic ˇ and a
point p, getting from p to the closest point in ˇ and then moving along ˇ describes a quasi-
geodesic. Although [31, Lemma 2.5] is stated for CAT(0) spaces, such an assumption is
not used in their proof (alternatively, see the proofs of [12, Lemma 2.2] and [1, Propos-
ition 4.2] where the authors prove similar statements without assuming the underlying
metric space is CAT(0)).

Lemma 2.8 ([31, Lemma 2.5]). Let ˇ be a .q; Q/-quasi-geodesic and let x 2 X . Let
y 2 ˇ satisfy d.x; y/ D d.x; ˇ/ and let z 2 ˇ. Then the concatenation Œx; y� [ ˇyz is
a .3q; Q/-quasi-geodesic, where Œx; y� is any geodesic connecting x; y and ˇyz is the
subsegment of ˇ connecting y; z.
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3. Morse is the same as strongly contracting in injective metric spaces

For a path ˇ, if x; y 2 ˇ, we use ˇyz to denote the subsegment of ˇ connecting y; z. The
following lemma, which is well known, states that for any three points x1; x2; x3 in an
injective metric space, there exists an isometrically embedded tripod with the appropriate
side lengths. More precisely, we have the following.

Lemma 3.1 (Existence of tripods). Let X be an injective metric space. Then for any
x1; x2; x3 2 X there exists a point p 2 X and geodesics ˇi from xi to p such that for all
i ¤ j the concatenation of ˇi and the reverse of ǰ is a geodesic from xi to xj .

Proof. Let xi be as in the statement and let a1; a2; a3 be non-negative integers such that
d.x1; x2/ D a1 C a2; d.x1; x3/ D a1 C a3 and d.x2; x3/ D a2 C a3 (i.e., the ai are the
various Gromov products of the xj ). Take three balls Bi around xi of radii ai . Such balls
mutually intersects, which means they totally intersect. Let p be in their total intersection.
Using our choice of Bi and ai , the point p satisfies the conclusion of the lemma (since
injective spaces are geodesic, see Proposition 2.3).

We now show increasingly strong properties of projections to Morse subsets in an
injective metric space. First, we show that given a point x, a Morse subset Y in an inject-
ive metric space, and a point y on Y , there exists a geodesic from x to y passing close to
the projection of x; this is what the proof shows even though later on we only need the
inequality stated in the following lemma.

Lemma 3.2. Let X be an injective metric space. Let Y be an M -Morse subset and let
x 2 X . If y 2 �Y .x/ and z 2 Y , then

d.x; z/ � d.x; y/C d.y; z/ � 2M.1; 0/ � 2:

Proof. We show that if y 2 �Y .x/ and z 2 Y , then there is a geodesic ˇ such that
d.y; ˇ/ �M.1; 0/C 1, which suffices.

By Lemma 3.1, we get a point p and geodesics Œx; p�[ Œp; z�; Œx; p�[ Œp; y�; Œz; p�[
Œp; y�. Since Y is M -Morse and p lies on the geodesic Œz; p� [ Œp; y�, we have
d.p; Y / � M.1; 0/. Furthermore, since Œx; p� [ Œp; y� is a geodesic, by Lemma 2.6 we
have d.p; y/ � d.p; Y /C 1, and in turn d.p; y/ �M.1; 0/C 1.

The next lemma improves upon the previous one by showing that, in the same setup,
any geodesic passes close to the projection point.

Lemma 3.3. Let X be an injective metric space. Let Y be an M -Morse subset and
let x 2 X . Then there exists a constant C , depending only on M , such that for any
y 2 �Y .x/; z 2 Y , and any geodesic ˛ from x to z, we have d.y; ˛/ � C .
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Proof. Fix the notation of the statement. If d.x; z/ < d.x; y/, then using Lemma 3.2 we
get

d.x; y/ � d.x; z/ � d.x; y/C d.y; z/ � 2M.1; 0/ � 2;

which gives us d.y; ˛/ � d.y; z/ � 2 C 2M.1; 0/. Hence, we may assume d.x; z/ �
d.x; y/.

Let p be the point along ˛ lying at distance d.x; y/ from x. Let now q 2 ˛xp (recall
that ˛xp is the subpath of ˛ from x to p) be a point minimising the distance from y. Let
Œy; q� be a geodesic connecting y to q given by the bicombing on X from Proposition 2.3.
The concatenation 
 of Œy; q� and ˛qp is a .3; 0/-quasi-geodesic by Lemma 2.8.

We now argue that p is the closest point to z on 
 . Note p is closest to z on ˛qp , since
the latter is contained in a geodesic to z. Moreover, since Œy; q� is assumed to be a bicomb-
ing geodesic and both y; q live in a ball B about x of radius d.x; p/, the geodesic Œy; q�
is entirely contained in B . Hence, no point on Œy; q� can be closer than d.p; z/ from z, as
d.x; z/D d.x;p/C d.p; z/. Now, since p is closest, we can again apply Lemma 2.8 and
get that the concatenation of Œy; q� and ˛qz is a .9; 0/-quasi-geodesic. Since Y is Morse
and p lies on said concatenation, we have d.p; p0/ � M.9; 0/ for some p0 2 Y . Using
Lemma 3.2, we have

d.x; p/ � d.x; p0/ � d.p0; p/ � d.x; y/C d.y; p0/ � 2M.1; 0/ � 2 �M.9; 0/;

so that d.y;p0/�M.9;0/C 2M.1;0/C 2, and hence d.y;p/� 2M.9;0/C 2M.1;0/C 2,
as required.

Finally, we obtain Theorem A.

Theorem 3.4. For any injective metric space X , a subset is Morse if and only if it is
strongly contracting. Moreover, the contracting constant only depends on the Morse gauge
and vice versa.

In light of the above lemmas, the proof is exactly the same as the proof of [10,
Theorem 2.14]. We include it for completeness.

Proof. The fact that strongly contracting subsets are Morse quantitatively is [1, The-
orem 1.4], so we will only prove the converse. Let Y be an M -Morse subset, B be a ball
centred at x of radius r with B \ Y D ;. Let y in B and let x0 2 �Y .x/; y0 2 �Y .y/.
Define A WD d.x; x0/ and notice that A � r . Choose a bicombing geodesic Œy; x0�.
Lemma 3.3 ensures the existence of a point z 2 Œy; x0� with d.z; y0/ � ı, where ı depends
only on M . Now, since Œy; x0� is a bicombing geodesic, any point z0 2 Œy; x0� satisfies
d.z0; x/ � max¹d.x; x0/; d.x; y/º � A. In particular, we have d.z; x/ � A. Hence, we
have

d.x; y0/ � d.x; z/C d.z; y0/ � AC ı:
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Now, applying Lemma 3.3 to the triangle x; x0; y0 gives us a point w 2 Œx; y0� with
d.x0; w/ � ı. Hence,

d.x; y0/ D d.x;w/C d.w; y0/ � .A � ı/C .d.x0; y0/ � ı/ D AC d.x0; y0/ � 2ı:

Combining the previous two inequalities gives

AC d.x0; y0/ � 2ı � d.x; y0/ � AC ı;

and hence d.x0; y0/ � 3ı. Hence, we have diam.�Y .B// � 6ı completing the proof.

In fact, the arguments above prove the following more general fact.

Corollary 3.5. Let Y be a subset of an injective metric space. The following statements
are all equivalent:

(1) Y is Morse.

(2) Y is strongly contracting.

(3) There exists an integerK such that every .9; 0/-quasi-geodesic with end points on
Y is contained in the K-neighbourhood of Y .

We remark that the bound in item (3) of the above corollary is sharper than the known
bound in CAT(0) spaces (see [10, Theorem 2.14] and [31, Theorem 3.10]). Namely, for
CAT(0) spaces, to ensure that a subset Y is strongly contracting, one needs to require that
.32; 0/-quasi-geodesics with end points on Y remain close to Y , while the above corollary
only requires .9; 0/-quasi-geodesics to stay close.

4. Consequences

4.1. Morse local-to-global

Roughly speaking, a space is said to be Morse local-to-global [34] if local Morse quasi-
geodesics are global Morse quasi-geodesics. The goal of this section is to prove that
geodesic metric spaces where the notions of Morse and strongly contracting are equi-
valent are Morse local-to-global. In fact, we shall prove the more general fact that in any
geodesic metric space, local strongly contracting quasi-geodesics are strongly contracting,
and the conclusion will then follow for spaces where the notions of Morse and strongly
contracting agree. We start by introducing the following notion.

Definition 4.1. A map 
 W I ! X is a .LIDI k; c/-local-strongly contracting quasi-
geodesic if for any Œs; t � � I , we have

js � t j � L H) 
 jŒs;t� is a D-strongly contracting .k; c/-quasi-geodesic:
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The main proposition we shall prove in this section is the following.

Proposition 4.2. GivenD;k; c, there existsLDL.D;k; c/ such that the following holds.
Every .LIDI k; c/-local-strongly contracting quasi-geodesic in a geodesic metric space
is a D-strongly contracting .k0; c0/-quasi-geodesic with k0; c0 depending only on D; k,
and c.

Notice that the contraction constant D in the hypotheses and conclusion is the same.
The following is similar to [18, Lemma 2.15].

Lemma 4.3 (Bounded jumps). For all k; c;D, there existsD0 with the following property.
Let 
 be a D-strongly contracting .k; c/-quasi-geodesic in a geodesic metric space X
and suppose that 
 consists of the concatenation 
1 � 
2 of two D-strongly contract-
ing .k; c/-quasi-geodesics, and call p the concatenation point. Let x 2 X be such that
d.�
1.x/; p/ � D

0. Then d.�
2.x/; p/ � D
0.

Proof. Suppose by contradiction that we have points xi 2 �
i .x/ with d.xi ; p/ � D0 for
someD0 DD0.K;C;D/ to be determined (notice that in this formulation the statement is
symmetric in 
1; 
2). Up to swapping indices, we can assume d.x1; x/ � d.x2; x/ DW d .
We have d.x; 
2/ � d � 1 by definition of projections, so that some point x01 within dis-
tance 1 of x1 on a geodesic Œx; x1� lies in a ball B around x disjoint from 
2. Therefore,
d.q; x2/ �D for any q 2 �
2.x

0
1/. We now argue that d.q;p/ is uniformly bounded. This

is because any geodesic Œx01;q� stays within distance bounded by someB DB.D/ from the
subpath of 
 from x1 to q, since said subpath is Morse with gauge depending onD only. In
particular, Œx01; q� passesB-close to p, and hence we would have d.x01;p/ < d.x

0
1; q/� 1 if

we have d.p; q/ > B C 1; therefore, d.p; q/ � B as required. Hence, d.x2; p/ �DCB ,
a contradiction for D0 > D C B .

The proof of Proposition 4.2 will be broken into the following two lemmas. The first
one establishes that local strongly contracting quasi-geodesics are strongly contracting
sets, and the second proves that they are indeed quasi-geodesics.

Lemma 4.4. Let D; k; c be given. There exists an L D L.D; k; c/ such that each
.LIDIkI c/-local-strongly contracting path 
 W Œa; b�! X , where X is a geodesic metric
space, is a D-strongly contracting set.

Proof. Choose L large enough to be determined later. Let B be a ball disjoint from 
 ,
and we claim that the projection of B to 
 is entirely contained in a subsegment 
 jI � 

with jI j � L. Once this claim is established we will be finished as 
 jI is D-strongly
contracting.

Suppose the claim does not hold, that is to say, B contains two points x; y whose pro-
jections �
 .x/; �
 .y/ contain points x0; y0 such that the 
 -subsegment connecting x0; y0,
denoted 
 jJ , satisfies jJ j > L. Subdivide 
 jJ into subsegments 
 jJ1 ; : : : ; 
 jJn with

.2D0 CD/k C kc CD < jJi j �
L

2



A. Sisto and A. Zalloum 12

for each i 2 ¹1; 2; : : : ; nº, where D0 is as in Lemma 4.3 (this can be done provided L >
4..2D0 CD/k C kc CD/). In particular, x0 is the initial point of 
 jJ1 and y0 is the ter-
minal point of 
 jJn . Since each jJi j � L

2
for i � 1, the subsegments 
 jJi[JiC1 are all .k;c/-

quasi-geodesic which are D-strongly contracting. Notice that y0, which is the terminal
point of 
 jJn , lives in �
 jJn .y/. Hence, applying Lemma 4.3 to 
 jJn�1[Jn D 
 jJn�1 � 
 jJn
we see that each projection of y to 
 jJn�1 is within D0 of the point 
 jJn�1 \ 
 jJn , hence
further thanD0 from the other endpoint of 
 jJn�1 since the distance between the endpoints
of 
 jJn�1 is at least jJn�1j=k � c > 2D0CD � 2D0. Repeating this process .n� 1/-times
shows that the projection of y to 
 jJ1 is withinD0 of the endpoint 
 jJ1 \ 
J2 of 
 jJ1 . That
is, the D0-neighbourhoods of the two endpoints of 
 jJ1 contain points from �
 jJ1 .x/ and
�
 jJ1 .y/, respectively. Since the distance between the endpoints of 
 jJ1 is larger than
2D0 CD (as shown above for 
 jJn�1 ), we see that B , which is disjoint from 
 jJ1 , has
projection of size larger than D, contradicting that 
 jJ1 is D-strongly contracting. This
concludes the proof.

Lemma 4.5. Continuing with the assumptions and notations from the previous lemma,
the path 
 is a .k0; c0/-quasi-geodesic where k0; c0 depend only on D; k; c.

Proof. Let L be the constant from the previous lemma. Since our ultimate goal is to prove
Proposition 4.2, we may enlarge L, as long as its value depends only on D; k; c. Let ˇ be
a geodesic connecting the endpoints of 
 and let 
 jJ be any subpath of 
 with jJ j D L.
Using our assumptions, the path 
 jJ is a .k; c/-quasi-geodesic which is D-strongly con-
tracting. Arguing exactly as in the previous lemma, if x; y are the endpoints of 
 , then
�
 jJ .x/; �
 jJ .y/ are within D0 D D0.D; k; c/ of the two (distinct) endpoints of 
 jJ . In
particular, d.�
 jJ .x/; �
 jJ .y// � L � 2D

0. Since 
 jJ is D-strongly contracting, if L is
large enough (depending only onD;k; c), the geodesic ˇ must pass 5D-close to 
 jJ (see,
e.g., the proof of [10, Lemma 4.4], see also [1, 18, 36]). That is, the geodesic ˇ must pass
within 5D of every subsegment 
J with jJ j D L. This ensures that 
 is a .k0; c0/-quasi-
geodesic with k0; c0 depending only on L; 5D both of which depend only on D; k; c,
concluding the proof.

In particular, the previous two lemmas provide a proof of Proposition 4.2. For the
convenience of the reader, we now recall the definition of the Morse local-to-global
property.

Definition 4.6 ([34, Definition 2.12]). Let M W Œ1;1/ � Œ0;1/! Œ0;1/ and B � 0. If

 is an M -Morse .k; c/-quasi-geodesic, we say 
 is a .M I k; c/-Morse quasi-geodesic. A
map 
 W I ! X is a .BIM Ik; c/-local Morse quasi-geodesic if for any Œs; t � � I , we have

js � t j � B H) 
 jŒs;t� is a .M I k; c/-Morse quasi-geodesic:
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A metric space X has the Morse local-to-global property if for every Morse gauge M
and constants k � 1, c � 0, there exists a local scale B � 0, Morse gauge M 0, and con-
stants k0 � 1, c0 � 0 such that every .BIM I k; c/-local Morse quasi-geodesic is a global
.M 0I k0; c0/-Morse quasi-geodesic.

The following proposition is immediate by combining Theorem 3.4 and Proposi-
tion 4.2.

Proposition 4.7. Every metric space where Morse quasi-geodesics are strongly contract-
ing quantitatively has the Morse local-to-global property. In particular, injective metric
spaces and Helly groups have the Morse local-to-global property.

4.2. Acylindrical hyperbolicity

Corollary 4.8. If G is a group acting properly and coboundedly on an injective metric
spaceX whose Morse boundary @MX contains at least three points, thenG is acylindric-
ally hyperbolic. In particular, Helly groups whose Morse boundary contain at least three
points are acylindrically hyperbolic.

Proof. Since X , whence G, has the Morse local-to-global property (Theorem F), by [34,
Proposition 4.8], G contains a Morse element. In view of Theorem A said element has a
strongly contracting orbit for the action on X . By [5, Theorem H], G acts on a hyperbolic
space with a loxodromic WPD, so that G is virtually cyclic or acylindrically hyperbolic.
Since G has three points in the Morse boundary, it is not virtually cyclic, concluding the
proof.

5. Strongly contracting geodesics persist in injective hulls

Given a metric spaceX , study the set� WD ¹f 2RX j f .x/C f .y/� d.x;y/ 8x;y 2Xº.
An element f 2 � is said to be of a metric form. Define the set �1 WD � \ Lip1.X;R/
where Lip1.X;R/ denotes the space of all 1-Lipshitz maps f W X ! R. We equip the
set �1 with the distance d1.f; g/ WD sup¹jf .x/ � g.x/j where x 2 Xº.

The space � has a natural poset structure where f � g if and only if f .x/ � g.x/
for all x 2 X . The injective hull of a metric space X , denoted E.X/, is defined to be the
collection of all minimal elements in the aforementioned poset on �:

E.X/ WD ¹f 2 � j if g 2 �;we have g � f H) g D f º:

As a metric space, the injective hull is the set E.X/ equipped with the d1-distance.
We now summarise some properties of E.X/. For more details, see [27, Section 3].

Lemma 5.1 ([27, Section 3]). For any metric space X , the injective hull E.X/ is a
geodesic metric space with respect to d1-distance. Furthermore, we have the following:
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(1) There is an isometric embedding e W .X;d/! .E.X/;d1/ given by x 7! d.x;�/.

(2) For any f 2 �1, we have f .x/ D d1.e.x/; f / for all x 2 X .

(3) For f 2 RX , we have f 2 E.X/ if and only if f 2 � and for any " > 0 and any
x 2 X , there is some y 2 X with f .x/C f .y/ � d.x; y/C ".

(4) E.X/ � �1.

Recall that Gromov’s four-point condition for a metric space X requires the existence
of a constant ı such that for all x; y;w; z 2 X we have

d.x; y/C d.w; z/ � max¹d.x; z/C d.w; y/; d.x;w/C d.y; z/º C ı:

For geodesic spaces, this condition is equivalent to hyperbolicity.
In the proofs below constants could be kept track of explicitly, but that would result

in complicated expressions, so we decided instead to use the notation x � y to denote
that the quantities x and y coincide up to an additive error depending on the constant C
featured in the statements. The notation x . y has a similar meaning. We will often abuse
notation and identify a point x 2 X with its image e.x/.

The following lemma says that a strongly contracting and hyperbolic subset stays
quasi-convex (with respect to geodesics) in the injective hull.

Lemma 5.2. For all C � 0 there exists D � 0 with the following property. Let X be a
metric space and let A � X be a C -strongly contracting subset satisfying Gromov’s four-
point condition with constant C . Then any geodesic in E.X/ connecting points of e.A/ is
contained in the D-neighbourhood of e.A/.

Proof. To save notation, we will identify X with e.X/. Let f 2 E.X/ lies on a geodesic
connecting a to b for some a; b 2 A. Since f lives on a geodesic connecting a; b,
we have d1.f; a/ C d1.f; b/ D d1.a; b/ D d.a; b/. On the other hand, by items (2)
and (4) of Lemma 5.1, we have f .a/ D d1.f; a/ and f .b/ D d1.f; b/. Hence, we
have f .a/ C f .b/ D d.a; b/. Since geodesics in X connecting points of A stay close
to A, there exists c 2 A with d.c; a/ � f .a/ and d.c; b/ � f .b/. We want to estimate
f .c/D d1.f; e.c//. By item (3) of Lemma 5.1, since f 2 E.X/, there exists x 2 X with
f .c/ � d.x; c/� f .x/, and by strong contraction we have d.x; c/ � d.x; x0/C d.x0; c/
for some x0 2 �A.x/. Putting these together we have

d.a; b/C f .c/ � d.a; b/C d.x0; c/C d.x; x0/ � f .x/:

We now have two cases from Gromov’s four-point condition: we do the case d.a;b/C
d.x0; c/ � d.a; x0/C d.b; c/CC , the other case being similar. Continuing the inequality
above, we get

. d.a; x0/C d.b; c/C d.x; x0/ � f .x/ � d.a; x/ � f .x/C d.b; c/;
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where again we used strong contraction. Since f is a metric form, we continue with

. f .a/C d.b; c/ � d.a; c/C d.c; b/ � d.a; b/:

Putting everything together we get d.a; b/ C f .c/ . d.a; b/, so that f .c/ � 0, as
required.

The following lemma gives the “reverse triangle inequality” which would follow from
knowing that geodesics to (the image of) a strongly contracting and hyperbolic subspace
of X pass close to projection points. We will actually use this lemma to prove this fact
about geodesics later.

Lemma 5.3. For all C � 0 there existsD � 0 with the following property. Let A � X be
C -strongly contracting satisfying Gromov’s four-point condition with constant C . Given
any x 2 E.X/, a 2 �e.A/.x/ and b 2 e.A/ we have

d1.x; b/ � d1.x; a/C d1.a; b/ �D:

Proof. Using Lemma 5.2, the proof proceeds exactly as in Lemma 3.2 (where the Morse
property was only applied to geodesics).

The following lemma is not about injective hulls, but rather it provides a way of
thinking about strong contraction of a hyperbolic subspace Y � X in terms of Gromov’s
four-point condition. Namely, for any x; y 2 X , sets of the form Y [ ¹x; yº still satisfy
Gromov’s four-point condition.

Lemma 5.4. For all C � 0 there exists ı � 0 with the following property. Let X be a
geodesic metric space and let Y be a C -strongly contracting subset satisfying Gromov’s
four-point condition with constant C . Then for any x; y 2 X , the set Y 0 D Y [ ¹x; yº

satisfies Gromov’s four-point condition with constant ı.

Proof. The lemma easily follows from the following well-known consequence of strong
contraction (see, e.g., the proof of [10, Lemma 4.4], see also [1, 18, 36]): There exists
C 0 D C 0.C / such that for all x; y 2 X , and x0 2 �A.x/; y0 2 �A.y/ with d.x0; y0/ � C 0

we have
d.x; y/ � d.x; x0/C d.x0; y0/C d.y0; y/ � C 0:

The following lemma says that in E.X/ geodesics to (the image of) a strongly
contracting and hyperbolic subspace of X pass close to projection points.

Lemma 5.5. For all C � 0 there exists D � 0 with the following property. Let X be a
geodesic metric space and let A � X be a C -strongly contracting subset satisfying Gro-
mov’s four-point condition with constant C . Given any f 2 E.X/, a 2 �e.A/.f /, and
b 2 e.A/, any geodesic in E.X/ from f to b passes within D of e.a/.
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Proof. Consider a geodesic as in the statement and let g be a point along that geodesic
with d1.f; g/ D d1.f; e.a//, so that d1.g; e.b// � d1.e.a/; e.b// by Lemma 5.3.
These can be rewritten as d1.f; g/ D f .a/ and g.b/ � d.a; b/, using item (2) of
Lemma 5.1. Our aim is to bound g.a/. Using items (3) and (4) of Lemma 5.1, there
exist x; y 2 X such that

g.a/C f .b/ � d.x; a/ � g.x/C d.y; b/ � f .y/:

Since A is strongly contracting and x; y 2 X , the set A0 D A [ ¹x; yº satisfies the
Gromov’s four-point condition by Lemma 5.4. Since X isometrically embeds in E.X/,
the set e.A0/ also satisfies Gromov’s four-point condition.

Applying Gromov’s four-point condition on the points a; b; x; y in the above coarse
equality, we either get

g.a/C f .b/ � d.x; a/C d.y; b/ � g.x/ � f .y/

. d.x; b/C d.y; a/ � g.x/ � f .y/

� g.b/C f .a/

� d.a; b/C f .a/

� f .b/

or

g.a/C f .b/ � d.x; a/C d.y; b/ � g.x/ � f .y/

. d.a; b/C d.x; y/ � g.x/ � f .y/

� g.y/ � f .y/C d.a; b/

� f .a/C d.a; b/

� f .b/;

where the fourth inequality holds since g.y/ � f .y/C d1.f; g/ D f .y/C f .a/ by the
triangle inequality and the defining property of g.

Theorem 5.6. For all C there exists D with the following property. Let X be a geodesic
metric space and let A � X be a C -strongly contracting subset satisfying Gromov’s
four-point condition with constant C . Then e.A/ is D-strongly contracting in E.X/.

Proof. Same as the proof of Theorem 3.4, using Lemma 5.5 instead of Lemma 3.3.

In particular, Theorem 5.6 recovers the following statement due to [27].

Corollary 5.7. If X is a hyperbolic metric space with respect to the Gromov’s four-point
condition, then X is dense in E.X/.
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Proof. Let f 2 E.X/ and let e.a/ 2 �e.X/.f /. By Lemma 5.1, we have f .a/ D

d1.e.a/; f / and there exists a point b 2 X with f .a/C f .b/ . d.a; b/. Since e.X/ is
D-strongly contracting, we have f .b/D d1.f; e.b//� d1.f; e.a//C d1.e.b/; e.a//D
f .a/ C d.a; b/. Finally, since f .a/ C f .b/ . d.a; b/ � f .b/ � f .a/, we get that
f .a/ . �f .a/ or f .a/ � 0.
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