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Global solutions for time-space fractional fully parabolic
Keller–Segel system

Aruchamy Akilandeeswari, Somnath Gandal, and Jagmohan Tyagi

Abstract. We show the existence of a global solution to time-space fractional fully parabolic
Keller–Segel system:8̂̂<̂

:̂
c
0D

ˇ
t uC .��/

˛=2uCr � .urv/ D 0; x 2 Rn; t > 0;

c
0D

ˇ
t v C .��/

˛=2v � u D 0; x 2 Rn; t > 0;

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; x 2 Rn;

under the smallness condition on the initial data, where 0 < ˇ < 1, 1 < ˛ � 2 and n � 2, u and v
denote the cell density and the concentration of the chemoattractant, respectively, and c0D

ˇ
t denotes

the Caputo fractional derivative of order ˇ with respect to time t . The nonlocal operator .��/˛=2,
defined with respect to the space variable x, is known as the Laplacian of order ˛2 . We establish the
existence of weak solution to the above system by fixed-point arguments under suitable conditions
on u0 and v0.

1. Introduction

In recent years, chemotaxis has gained significant interest due to its important role in
various biological phenomena; see, for instance, [1,6,14,32,33,36,37]. The mathematical
analysis on chemotaxis models has provided a foundation for much of this work. Because
of its natural simplicity, analytical tractability, and extent to replicate key behavior of
chemotactic populations, the applications of this model have produced a huge literature
on fascinating problems on the global existence of solutions, blow-up, and asymptotic
behavior of solutions.

The theoretical and mathematical modeling of chemotaxis originates from the pio-
neering works of Patlak in 1950s [45] and Keller and Segel in 1970s [32]. Let us recall
the earlier works on the Keller–Segel systems to motivate and demonstrate our results in
the right perspective. The very first mathematical model of chemotaxis given by´

ut D �u � r � .urv/;

vt D �v � v C u;
(1.1)
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is well known as Keller–Segel (K-S) system; see [32]. This system describes the chemo-
tactic interaction between amoebae as considered in [38], where u is the unknown density
and v is the signal concentration. Model (1.1) is well studied for the global bounded-
ness and blow-up criterion of positive solutions in radial domains. For a quick review of
the developments on Keller–Segel systems, we refer to [3, 25, 26]. There are numerous
chemotaxis models, which can be described in a more general form as follows:´

ut D r � .S.u; v; jruj/ru/ � �r � .uD.u; v; jrvj/rv/;

�vt D a�v C k.u; v/ � h.u; v/v;
(1.2)

where u denotes the density of cells in a domain and v represents the concentration of
chemical signal, S.u; v; jruj/ is the mobility function describing the diffusivity of cells,
and D.u; v; jrvj/ is called the chemotactic sensitivity. The kinetic functions k and h act
for the generation and degradation of a chemical signal, respectively, and � 2 ¹0; 1º.

We refer to [19,20,57] for the Keller–Segel models with cross-diffusion term depend-
ing on a function of u, �r � .u�.u/rv/ and the chemotaxis systems with corresponding
parabolic equation given by

ut D r � .S.u/ru/ � �r � .uD.u/rv/:

We refer to [23, 56], where, for certain choices of S.u/ and D.u/, the existence of global
and bounded solution has been established. There is substantial research on chemotaxis
models with nonlinear signal production; see [22, 51, 61, 62], where the second equation
of (1.2) is considered as

�vt D �v � v C k.u/; � 2 ¹0; 1º:

The Keller–Segel systems with gradient dependent chemotactic coefficients are investi-
gated in many papers; see, for instance, [5, 7, 8, 30, 44, 53, 58].

There also have been developments on the existence and qualitative behavior of solu-
tions to the following systems in Rn:8̂<̂

:
ut D �u � r �

�
�.u; v/rv

�
; x 2 Rn; t > 0;

�vt D �v � 
v C ˇu; x 2 Rn; t > 0;

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; x 2 Rn:

(1.3)

Let 
 D ˇD 1 and �.u;v/D u in (1.3); then, the global strong solution to the correspond-
ing system in Rn, n� 3, has been proved in [38] with suitable smallness conditions on the
initial data u0 2 L

n=2
w .Rn/ and v0 2 BMO . Authors have employed the method built on

the perturbation of linearization along with the Lp-Lq estimates of the heat semigroup.
They have also discussed the stability of solution of (1.3). Kozono and Sugiyama [39]
considered the Keller–Segel system (1.3) with � D 0, ˇ D 1, and �.u; v/ D u in dimen-
sion 2. They proved the existence of a mild solution to the system for every u0 2 L1.R2/.
They also established the finite time blow-up of strong solutions under the assumption
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ku0kL1 > 8� and kx2u0kL1 <
1


� g.
ku0kL1
8�

/, where g.s/ is an increasing function of
s > 1.

Next, we also mention a few recent works which deal with the existence of solutions
to the following more general class of Keller–Segel system:8̂<̂

:
ut D r �

�
rum � �.u; v/rv

�
; x 2 Rn; t > 0;

�vt D �v � v C u; x 2 Rn; t > 0;

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; x 2 Rn:

(1.4)

The above Keller–Segel system with power-type nonlinearity has been studied by many
authors. For instance, Sugiyama and Kunii [50] established the Lr -decay property, 1 �
r < 1, of solutions to (1.4) with � D 0 and �.u; v/ D uq�1, when q � m C 2

n
. The

L1-decay property of the same system has been obtained in [27]. Ishida and Yokota [28]
studied the global existence of weak solutions to (1.4) with �.u; v/ D uq�1 under the
condition q < m C 2

n
. They have also showed the global existence of weak solution to

the same system with small initial data in [29]. Sugiyama [49] proved the global existence
of a weak solution to (1.4) with �.u; v/ D u, if either m � 2 for large initial data or
1<m� 2� 2

n
for small initial data. She also discussed the decay properties of the solution

when the initial data is small. Antonio Carrillo and Lin [18] studied the global existence
and blow-up of weak solutions to the following degenerate chemotaxis model with two
species and two stimuli in dimension n � 3:8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

ut D ru
m1 � r � .urv/ x 2 Rn; t > 0;

�rv D w; x 2 Rn; t > 0;

wt D rw
m2 � r � .wrz/; x 2 Rn; t > 0;

�rz D u; x 2 Rn; t > 0;

u.x; 0/ D u0.x/; w.x; 0/ D w0.x/; x 2 Rn;

where m1; m2 > 1 denote the constants. They demonstrated that the qualitative behavior
of the solutions is determined by critical curves. More precisely, they have obtained two
critical curves intersecting at one point which separate the global existence and blow-
up of weak solutions to the problem. Ulusoy [54] studied the existence and blow-up of
solutions to the gradient flow problems in higher dimensions. He established the existence
of a critical value of a parameter in the equation below which there is a global-in-time
energy solution and above which there exist blowing-up energy solutions. We also refer
to [17] for further properties of gradient flow problems.

There have been considerable efforts to study fractional Keller–Segel systems. Frac-
tional derivative in time is used to model complex behaviors, like particle sticking and
trapping phenomena. These phenomena involve intricate interactions over time, where tra-
ditional integer-order derivatives may not capture all the nuances. Fractional derivative in
space is used to model situations where particles undergo long jumps or exhibit anomalous
diffusion. Such behavior is often observed in systems with underlying complexity, such
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as disordered media or environments with obstacles. As it is well known that the behav-
ior of most biological systems has memory and aftereffects; therefore understanding the
behavior of these systems with memory effects is crucial for improving the accuracy of
mathematical models in describing real-world phenomena. Because of these novel charac-
teristics, the biological systems with fractional derivatives have become more captivating
in recent years. We point out that there are very few works dealing with time-fractional
Keller–Segel systems. See, for instance, [4], where Azvedo et al. investigated the global
existence of solutions to fractional Keller–Segel system in Rn, n � 2. They assumed that
the initial data is small enough and belongs to a class of Besov–Morrey spaces, that is,
u0 2 N �b

r;�;1
, v0 2 PB01;1. They used the iteration method to obtain the self-similar solu-

tions of the system. Cuevas et al. [21] focused on the well-posedness of solutions to the
same system considering specific initial conditions u0 2 LN \ L

N
2 \ L1, N � 2, and

v0 2 PB
0
1;1. They also explored the asymptotic behavior and regularity properties of the

solutions in suitable Lebesgue spaces.
In the context of time-fractional partial differential equations (PDEs), to demonstrate

and apply the compactness theorem, Li and Liu [42] examined the following system:´
c
tD

˛uCr � .urv/ D �u; x 2 R2; t > 0;

��v D u; x 2 R2; t > 0;

and proved the existence and uniqueness of weak solutions using mollifiers and iteration
method. In this case, the authors also assumed that u0 2 L1.R2/ \ L2.R2/ and nonneg-
ative. The authors in [2] proved the existence of nonnegative solution to time-fractional
Keller–Segel system´

c
tD

˛u D d1�u � r �
�
�.u; v/rv

�
; x 2 �; t > 0;

c
tD

˛v D d2�v � 
v C ˇu; x 2 �; t > 0;

with Dirichlet boundary conditions by using Galerkin’s approximation technique. They
also discussed the existence of solutions to the system with Neumann boundary condi-
tions. Zhang et al. [60] considered a fractional parabolic-elliptic Keller–Segel system´

ut C .��/
suC �r � .urv/ D u.a � bu/; t > 0; x 2 Rn;

0 D .� � I /v C u; t > 0; x 2 Rn;

with a logistic source on Rn and s 2 .0; 1/. They established the regularity of weak solu-
tions to the system. They also proved the existence and uniqueness of classical solutions
by semigroup method. With different choices of B.u/, many authors discussed the exis-
tence and related qualitative questions to the following system:´

ut D �.��/
s=2u � �r � .uB.u//C f .u/;

�vt D �v C g.u; v/:
(1.5)
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For instance, the local existence and uniqueness of solutions to (1.5) with � D 0, B.u/ D
r � .��1u/, and f .u/ D 0 have been studied in [40] under u0 2 Lp.R2/ \Hm.R2/ for
some p with 1<p < 2 andm>3. In [11], the conditions for the local and global existence
of positive weak solutions to this system in dimensions 2 and 3 have been obtained. Also,
the local existence of solution to the same system with u0 2B1�s2;r .R

2/, r 2 Œ1;1/, and 1<
s < 2 has been established by Biler and Wu [13]. For n� 2 and u0 2Lp.Rn/, the existence
of unique mild solution to (1.5) with B.u/D r � ..��/��=2u/ is proved in [12] under the
conditions that 1 < s � 2, 1 < � � n, and max¹ n

sC��2
; 2n
n���1

º < p � s. Biler et al. [10]
derived the blow-up criteria for the solutions of (1.5) with B.u/ D r � ..
I � �/�1u/,

 � 0, in terms of Morrey spaces when n D 2. Wu and Zheng [59] established the well-
posedness of solutions to the following space fractional parabolic-parabolic Keller–Segel
system: ´

ut C .��/
s1=2uCr � .�urv/ D 0; t > 0; x 2 Rn;

vt C .��/
s2=2v D u; t > 0; x 2 Rn;

(1.6)

with small initial data in the Fourier–Herz spaces. Wang et al. [55] showed the well-
posedness and decay of global solutions of (1.6) in dimension 3, where s1=2 D s2=2 2

.2=3; 1/. Burczak and Belinchon [15] considered the fractional Keller–Segel system with
logistic term´

ut C �.��/
s1=2u D r � .u.��/

s2�1
2 v/C ru.1 � u/; t > 0; x 2 Rn;

�vt C �.��/
s2=2v D u � �v; t > 0; x 2 Rn

in dimension one and proved the well-posedness in subcritical and critical cases. More-
over, they discussed the dynamics properties of the system. When n� 3 and 0< s1; s2 <2,
the decay estimates for the following Poisson–Nernst–Planck system:8̂̂<̂

:̂
ut C .��/

s1=2uCr � .�ur / D 0; t > 0; x 2 Rn;

vt C .��/
s2=2v Cr � .�vr / D 0; t > 0; x 2 Rn;

� D u � v; t > 0; x 2 Rn;

have been obtained in [24] in suitable spaces. We refer to [31] for a hyperbolic Keller–
Segel system with degenerate nonlinear fractional diffusion. We remark that it will be of
interest to see the existence and blow-up results to the above Keller–Segel systems, where
.��/˛=2u and .��/˛=2v are replaced by .��/˛=2f .u/ and .��/˛=2g.v/, respectively,
under suitable conditions on f and g in the spirit of [31].

Recently, using the fixed-point arguments, Li et al. [42] proved the existence and
uniqueness of solutions to the following time-space fractional Keller–Segel system:´

c
0D

ˇ
t uC .��/

˛=2uCr � .uB.u// D 0; .x; t/ 2 Rn � .0;1/;

u.x; 0/ D u0.x/; x 2 Rn;
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where 0 < ˇ < 1, 1 < ˛ � 2 andB.u/Dr..��/�
=2u/, 1 < 
 � n. They also established
the non-negativity of the solution and blow-up behaviors.

Motivated by [42] and the above works on the Keller–Segel systems and importance
of these problems in biology, we are interested in discussing the existence of solutions to
the following time-space fractional parabolic-parabolic Keller–Segel system:8̂̂<̂

:̂
c
0D

ˇ
t uC .��/

˛=2uCr � .urv/ D 0; x 2 Rn; t > 0;

c
0D

ˇ
t v C .��/

˛=2v � u D 0; x 2 Rn; t > 0;

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; x 2 Rn;

(1.7)

where 0 < ˇ < 1, 1 < ˛ � 2, and n � 2, u and v denote the cell density and the concen-
tration of the chemoattractant, respectively, c0D

ˇ
t denotes the Caputo fractional derivative

of order ˇ with respect to t , and .��/˛=2 is defined as follows:

.��/˛=2u.x/ D F �1
�
j�j˛ Ou.�/

�
.x/;

where

Ou.�/ D F u.x/ D

Z
Rn

u.x/e�ix� dx (1.8)

is the Fourier transform of u.x/. To the best of our knowledge, we are not aware of the
existence results for (1.7). System (1.7) describes the biological phenomenon chemotaxis
with both anomalous diffusion and memory effects.

We mention that (1.7) generalizes the following classical Keller–Segel system (with
� D 1): 8̂<̂

:
ut D �u � r �

�
urv

�
; x 2 Rn; t > 0;

�vt D �v C u; x 2 Rn; t > 0;

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; x 2 Rn;

(1.9)

which was one of the main motivations to consider (1.7). System (1.9) is called the sim-
plified Keller–Segel system. This describes the evolution of cell density governed by the
diffusion and the impact of a chemoattractant. Such systems appear not only in biological
sciences but are also used, for example, in astrophysics to depict the evolution of clouds
of self-gravitating particles; see [9, 47, 48]. From the mild formulation of (1.7), we have

u.t/ D Sˇ˛ .t/u0 �

Z t

0

r � .T ˇ˛ .t � s/.u.s/Lu.s/// ds

�

Z t

0

r � .T ˇ˛ .t � s/.u.s/rS
ˇ
˛ .s/v0// ds

D Sˇ˛ .t/u0 C B.u; u/CH.u/;

whereB is the bilinear form andH is the linear operator on suitable Banach spaces, which
are explicitly mentioned later. The operators Sˇ˛ and T ˇ˛ are defined next. We employ the
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fixed-point arguments to find the solution u of

u.t/ D Sˇ˛ .t/u0 C B.u; u/CH.u/:

We would like to point out that, because of the parabolic-parabolic fractional Keller–
Segel system, the second equation of (1.7) leads to the additional term H.u/ in the above
equation. The following facts make our problem quite challenging:

(i) System (1.7) is parabolic-parabolic fractional Keller–Segel system.

(ii) The corresponding solution of the second equation has a representation in the
integral form, where the boundedness of v is not handy.

(iii) To prove the boundedness of the bilinear form B , there is a challenge as Hardy–
Littlewood–Sobolev inequality is not applicable.

(iv) The presence of the initial data v0 poses an additional difficulty in proving the
boundedness of v in Lp space.

We overcome these challenges by the following ideas:

(i) In order to find the Lq estimates of rv, we use Hölder’s inequality and the
properties of the fundamental solutions are utilized, efficiently.

(ii) The boundedness of bilinear form is proved with the help of the Lq estimates of
rv as we do in (i).

1.1. Results

The purpose of this section is to present our results on the local existence, uniqueness, and
global existence of solutions to the Cauchy problem (1.7). First, we perform the scaling
analysis to find suitable Lp spaces to study (1.7). Let .u; v/ be the solution of (1.7). Let
us consider the mass preserving scaling as follows:

u�.x; t/ WD �
nu.�x; �bt / and v�.x; t/ WD �

n�˛v.�x; �bt /:

Then, .��/
˛
2 u�D �

nC˛.��/
˛
2 u andr � .u�rv�/D �2nC2�˛r � .urv/. Now, if nC ˛ >

2nC 2 � ˛, i.e., n < 2˛ � 2, then the diffusion is stronger. Since we have assumed ˛ 2
.1; 2/ and n� 2, this will not be possible. Now, if n > 2˛ � 2, the aggregation term can be
strong and this case is referred to as the super-critical case (in terms of mass concentration
or diffusion). Now, it is easy to see that the scaling

u�.x; t/ WD �2˛�2u.�x; �
˛
ˇ t / and v�.x; t/ WD �˛�2v.�x; �

˛
ˇ t /

also satisfies the system (1.7) with the initial data

u
�
0 D �

2˛�2u0.�x/ and v
�
0 D �

˛�2v0.�x/:

Under the transformation u! u�, the L
n

2˛�2 -norm is invariant. Thus, the critical index
should be pc WD n

2˛�2
and Lpc is the critical space.
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The main results of this paper are the following theorems, which we will prove in
ensuing sections following the arguments in [42].

Next, Theorem 1.1 states that system (1.7) has a unique mild solution for small time.

Theorem 1.1. Let n � 2, 0 < ˇ < 1, and 1 < ˛ � 2. Let p 2 .pc ;1/, q 2 .2pc ;1/, and
0 < 1

p
�
1
q
< ˛�1

n
. Then, for any u0 2 Lp.Rn/ and rv0 2 Lq.Rn/, there exists T > 0

such that (1.7) admits a unique mild solution .u; v/ satisfying u 2 C.Œ0; T �ILp.Rn//
and rv 2 C.Œ0; T �ILq.Rn// with initial value u0 and v0, respectively, in the sense of
Definition 3.1. Let

Tm WD sup
®
T > 0 W (1.7) has a unique solution .u; v/ with u 2 C.Œ0; T �ILp.Rn//

and rv 2 C.Œ0; T �ILq.Rn//
¯
:

Then, if Tm <1; we have
lim sup
t!T�m

ku.�; t /kp D C1

and
lim sup
t!T�m

krv.�; t /kq D C1:

In the next theorem, we have the existence of global-in-time solution of (1.7).

Theorem 1.2. Let n � 2, 0 < ˇ < 1, and 1 < ˛ � 2. Let p, q, and ` satisfy 1 � pc
2
< ` <

pc <
n`

nC`.1�2˛/
, p D pc`

pc�`
, and 0 < 1

p
�
1
q
< ˛�1

n
. Then, there exists ı > 0 such that,

for u0 2 Lpc .Rn/ with ku0kpc � ı and v0 D 0, system (1.7) admits a mild solution .u; v/
with u 2 C.Œ0;1/ILpc .Rn// and rv 2 C.Œ0;1/ILp.Rn// \ C.Œ0;1/ILq.Rn// with
initial value .u0; 0/, satisfying

ku.t/kpc � 2ı; 8t > 0;

and u 2 C..0;1/ILp.Rn//. Further, u is unique in

XT WD
®
u2C.Œ0; T �ILpc .Rn// \ C.Œ0; T �ILp.Rn// j kukpc ;p;T <1

¯
; T 2 .0;1/;

and hence, v is also unique.

In the next theorem, we establish the integrability of solution to (1.7), when u0 2
L1.Rn/ \ Lp.Rn/ and rv0 2 L1.Rn/ \ Lq.Rn/.

Theorem 1.3. Let n � 2, 0 < ˇ < 1, and 1 < ˛ � 2. Let p 2 .pc ;1/, q 2 .2pc ;1/,
and 0 < 1

p
�
1
q
< ˛�1

n
. Suppose u0 2 L1.Rn/\Lp.Rn/, and rv0 2 L1.Rn/\Lq.Rn/.

Then, we have the following.
(i) There exists T > 0 such that (1.7) admits a unique mild solution .u; v/ with u 2

X WD C.Œ0; T �IL1.Rn// \ C.Œ0; T �ILp.Rn// and

rv 2 Y WD C.Œ0; T �IL1.Rn// \ C.Œ0; T �ILq.Rn//
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with initial values .u0; v0/. Further,Z
Rn

u.x; t/ dx D
Z

Rn

u0.x/ dx

and Z
Rn

v.x; t/ dx D
Z

Rn

v0.x/ dx C
tˇ

ˇ�.ˇ/

Z
Rn

u0.x/ dx:

(ii) Let

Tm D sup¹T > 0 j (1.7) has a unique solution .u; v/ with u 2 X and rv 2 Y º:

If Tm <1, then we have

lim
t!T�m

sup.ku.�; t /k1 C ku.�; t /kp/ D C1

and
lim
t!T�m

sup.krv.�; t /k1 C krv.�; t /kp/ D C1:

Next result gives the solution in the weighted spaces for small time.

Theorem 1.4. For n� 2, 0<ˇ < 1, 1< ˛� 2, let u0 2L1nC˛.R
n/ andrv0 2L1nC˛.R

n/.
Then, there exists T > 0 such that (1.7) has a unique mild solution .u; v/ with u 2
L1.Œ0; T �IL1nC˛.R

n// and rv 2 L1.Œ0; T �IL1nC˛.R
n// satisfyingZ

Rn

u dx D
Z

Rn

u0 dx

and Z
Rn

v.x; t/ dx D
Z

Rn

v0.x/ dx C
tˇ

ˇ�.ˇ/

Z
Rn

u0.x/ dx:

Let T ˛m D sup¹T > 0 j (1.7) has a unique mild solutionº. If T ˛m <1, then we have

lim sup
t!T ˛�m

ku.�; t /kL1nC˛ D C1

and
lim sup
t!T ˛�m

krv.�; t /kL1nC˛ D C1:

Further, this solution is the same as in Theorem 1.3 on Œ0;T ˛m/, and u2C.Œ0;T ˛m/;L
p.Rn//,

8p 2 Œ1;1/.

1.2. Organization of the article

The paper is organized as follows. In Section 2, we recall useful preliminaries and list
the important results which are used in ensuing sections. Section 3 deals with the proofs
of main results. Finally, in appendix, we provide a proof of integral representation of the
solution to the given system.
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2. Preliminaries

Let us recall the important definitions and auxiliary results. For any Banach space X ,
Lp.0; T IX/ consists of all strongly measurable functions u W Œ0; T �! X with

kukLp.0;T IX/ D

�Z T

0

kuk
p
X dt

�1=p
<1

for 1 � p <1 and

kukL1.0;T IX/ D ess sup0�t�T kukX <1:

Definition 2.1 (The Gamma function [46]). Let us recall the Gamma function �.z/,
which is defined as follows:

�.z/ D

Z 1
0

e�t tz�1 dt:

The above integral converges in the right half of the complex plane Re.z/ > 0, z 2 C.

Definition 2.2 (The Mittag–Leffler function [35]). The one-parameter Mittag–Leffler
function E˛.z/ is defined as follows:

E˛.z/ D

1X
kD0

zk

�.˛k C 1/
; z 2 C; Re.˛/ > 0:

The two-parameter Mittag–Leffler function is described by

E˛;ˇ .z/ D

1X
kD0

zk

�.˛k C ˇ/
; z; ˇ 2 C; Re.˛/ > 0:

In particular, it is easy to see that, for ˇ D 1, we have E˛;1.z/ D E˛.z/.

The following definitions and auxiliary results are borrowed from [42]. For the con-
venience of the reader and better exposition, we re-write the same here. For the details on
these, we refer to [42].

Definition 2.3 ([42]). Suppose that X is a Banach space and u 2 L1
loc
..0; T /IX/ is a

locally integrable function. If there exists u0 2 X such that

lim
t!0C

1

t

Z t

0

ku.s/ � u.0/kX ds D 0;

we say u0 is the right limit of u at t D 0, denoted as u.0C/D u0. Similarly, u.T�/ is the
constant uT 2 X such that

lim
t!T�

1

T � t

Z T

t

ku.s/ � uT kX ds D 0:
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As in [41], we also use the following distributions ¹g˛º as the convolution kernels for
˛ > 1:

g˛ D

8̂̂<̂
:̂

�.t/
�.˛/

t˛�1; ˛ > 0;

ı.t/; ˛ D 0;
1

�.1C˛/
D.�.t/t˛/; ˛ 2 .�1; 0/:

Here, �.t/ is the standard Heaviside step function and D stands for the distributional
derivative. For a locally integrable function, the weak Caputo derivative is defined as fol-
lows.

Definition 2.4 ([42]). Suppose thatX is a Banach space and u 2L1
loc
.Œ0;T /IX/, u0 2X .

We define the weak Caputo derivative of u associated with initial data u0 to be c0D
˛
t u 2D 0

(space of all distributions) such that, for any test function ' 2 C1c ..�1; T /IR/,

h
c
0D

˛
t u; 'i D

Z T

0

.u � u0/
c
0
zD˛
t ' dt;

where c0 zD
˛
t u denotes the right Caputo derivative of u associated with uT . If u.0C/ D u0

in the sense of Definition 2.3, we say that c0D
˛
t u is the Caputo derivative.

Let X D Rn. Then, the Caputo derivative is given by

c
0D

˛
t u D g�˛ � ..u � u0/�.t//:

We define the functions P1.x; t/ and P2.x; t/ for 0 < ˛ � 2 and 0 < ˇ < 1 as follows:

F P1.�; t / D Eˇ .�j�j
˛tˇ / and F P2.�; t / D Eˇ;ˇ .�j�j

˛tˇ /;

where F denotes the Fourier transform defined in (1.8). Also, define

Z.x; t/ WD tˇ�1P2.x; t/:

Let A D .��/˛=2 and consider the operators Sˇ˛ .t/; T
ˇ
˛ .t/ as follows:

f .x/! Sˇ˛ .t/f .x/ D Eˇ .�t
ˇA/f .x/ D P1.�; t / � f .x/; (2.1)

f .x/! T ˇ˛ .t/f .x/ D t
ˇ�1Eˇ;ˇ .�t

ˇA/f .x/ D Z.�; t / � f .x/: (2.2)

The pair .P1; Z/ is the fundamental solution of (1.7); see [34] for the details on it. As
a next result, we recall the Lr -Lq estimates of the fundamental solutions or, in other
words, the solution operators. These estimates are very crucial in our analysis. We refer to
[42, Proposition 3.3] for the details.

Proposition 2.5 ([42, Proposition 3.3]). Let 0 < ˇ < 1 and 1 < ˛ � 2. Then, the following
estimates hold.
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(i) We have

Sˇ˛ .t/u

1 � kuk1; 

T ˇ˛ .t/u

1 � 1

�.ˇ/
tˇ�1kuk1;



rSˇ˛ .t/u

p � Ckrukp

rSˇ˛ .t/u

1 � Ct� ˇ˛ kuk1; 

rT ˇ˛ .t/u

1 � Ct� ˇ˛Cˇ�1kuk1:
(ii) Let q 2 Œ1;1/. We define �1 D

qn
n�q˛

if n > q˛ and �1 D1, otherwise. Then, for
any r 2 Œ1; �1/, we have

kSˇ˛ .t/ukr � Ct
�
nˇ
˛ .

1
q�

1
r /kukq :

If r D q, the constant can be chosen to be 1. If n < q˛, then the above also holds for
r D �1 D1.

(iii) Let q 2 Œ1;1/. We define �2 D
qn

n�2q˛
if n > 2q˛ and �2 D1, otherwise. Then,

for any r 2 Œ1; �2/, we have

kT ˇ˛ .t/ukr � Ct
�
nˇ
˛ .

1
q�

1
r /Cˇ�1kukq :

If r D q, the constant can be chosen as 1
�.ˇ/

. If n < 2q˛, then the above also holds for
r D �2 D1.

(iv) Let q 2 Œ1;1/. We define �3 D
qn

nCq.1�˛/
if n > q.˛ � 1/ and �3 D1, otherwise.

Then, for any r 2 Œq; �3/, there is C > 0 satisfying

krSˇ˛ .t/ukr � Ct
�
nˇ
˛ .

1
q�

1
r /�

ˇ
˛ kukq :

If n < q.˛ � 1/, then the estimate also holds for r D �3 D1.
(v) Let q 2 Œ1;1/. Let �4 D

qn
nCq.1�2˛/

if n > q.2˛ � 1/ and �4 D1, otherwise. Then,
for r 2 Œq; �4/, there is C > 0 satisfying

krT ˇ˛ .t/ukr � Ct
�
nˇ
˛ .

1
q�

1
r /�

ˇ
˛Cˇ�1kukq :

If n < q.2˛ � 1/, the estimate also holds for r D �4 D1.

Next, we recall the weighted estimates of the fundamental solutions.

Proposition 2.6 ([42, Proposition 3.5]). Assume 0 < ˇ < 1, 1 < ˛ � 2, and

u0 2 L
1
nC˛.R

n/ � L1.Rn/ \ L1.Rn/:

Then, there is C > 0 such that

Sˇ˛ .t/u0

L1nC˛ � C

u0

L1nC˛ C Ctˇ

u0

1;

rT ˇ˛ .t/u0

1L1nC˛ � Ct� ˇ˛Cˇ�1

u0

L1nC˛ C Ct2ˇ� ˇ˛�1

u0

1:
Next, we mention a fixed-point theorem on the existence of solutions of equations with

continuous bilinear mappings. This theorem is crucial to obtain existence and uniqueness
of solutions.
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Lemma 2.7 ([16, Lemma 5], [59, Lemma 3.2]). Let X be the Banach space,H W X ! X

a linear operator such that, for any x 2 X ,

kH.x/kX � �kxkX ;

and B W X �X ! X a bilinear mapping such that, for any x1; x2 2 X ,

kB.x1; x2/kX � �kx1kXkx2kX

for some constant �; then, for any � with 0 � � < 1 and for any y 2 X such that

4�kyk < .1 � �/2;

the equation
x D y C B.x; x/CH.x/

has a solution x in X . In particular, the solution is such that

kxkX �
2kykX

1 � �
;

and it is unique in B.0; 1��
2�
/.

3. Existence of mild solution

The results in this section are proved using fixed-point arguments for a bilinear operator
in Banach space. Denote A D .��/˛=2. Then, following [52] (see Appendix), taking the
Laplace transform of (1.7), solution of (1.7) is given by the following Duhamel’s-type
integral equation:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

u.t/ D Eˇ .�t
ˇA/u0 � ˇ

Z t

0

.t � �/ˇ�1E 0ˇ .�.t � s/
ˇA/.r � .urv//.s/ ds

D Eˇ .�t
ˇA/u0 �

Z t

0

.t � s/ˇ�1Eˇ;ˇ .�.t � s/
ˇA/.r � .urv//.s/ ds;

v.t/ D Eˇ .�t
ˇA/v0 C

Z t

0

.t � s/ˇ�1Eˇ;ˇ .�.t � s/
ˇA/u.s/ ds;

(3.1)

where ˇE 0
ˇ
.t/ D Eˇ;ˇ .t/. See [34, 42] for the properties of fundamental solutions of the

Cauchy problem
D
ˇ
t uC .��/

˛=2u D f .x; t/

with 0 < ˇ < 1 and 1 < ˛ � 2. From (2.1), (2.2), and (3.1), the mild formulation of (1.7)
can be written as follows:8̂̂<̂

:̂
u.t/ D Sˇ˛ .t/ u0 �

Z t

0

r � .T ˇ˛ .t � s/.u.s/rv.s/// ds;

v.t/ D Sˇ˛ .t/ v0 C

Z t

0

T ˇ˛ .t � s/u.s/ ds:
(3.2)
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Therefore, we can write

u.t/ D Sˇ˛ .t/u0 �

Z t

0

r � .T ˇ˛ .t � s/.u.s/Lu.s/// ds

�

Z t

0

r � .T ˇ˛ .t � s/.u.s/rS
ˇ
˛ .s/v0// ds

D Sˇ˛ .t/u0 C B.u; u/CH.u/;

where the bilinear form B and the linear operators L and H are defined as

B.u; z/ WD �

Z t

0

r � .T ˇ˛ .t � s/.u.s/Lz.s/// ds;

Lz.t/ WD �

Z t

0

rT ˇ˛ .t � s/z.s/ ds;

H.u/ WD �

Z t

0

r � .T ˇ˛ .t � s/.u.s/rS
ˇ
˛ .s/v0// ds:

This linear operator L gives the information about the solution of the second equation
in (1.7). Next, following [42], we recall the definition of the mild solution of (1.7).

Definition 3.1. Let X and Y be the Banach spaces over space and time. Then, u 2 X and
v 2 Y is called a mild solution of (1.7) if u and v satisfy the integral equation (3.1).

Once we have u satisfying the first equation in (3.2), we get v from the second equation
of (3.2). Therefore, to show that .u; v/ satisfies (3.1), it is enough to prove that u satisfies
first equation in (3.2). Subsequently, using properties of the operators Sˇ˛ and T ˇ˛ , first,
we establish Lq and Lp , estimates for operators L, B , and H , respectively.

3.1. Proof of Theorem 1.1

The proof consists in constructing solutions to (3.1) by Lemma 2.7 with y D S
ˇ
˛ .t/u0

and with the associated bilinear form B and linear operator H . By (i) of Proposition 2.5,
S
ˇ
˛ u0 2 C.Œ0; T �IL

p.Rn// and

kSˇ˛ u0kC.Œ0;T �ILp.Rn// � ku0kp:

Assume 1 � p � q < �4 and 0 < 1
p
�
1
q
< ˛�1

n
. Then, for p 2 Œ1;1/ and q 2 Œp; �4/,

by (v) of Proposition 2.5, we have

kLz.t/kq �

Z t

0



rT ˇ˛ .t � s/z.s/

q ds

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
p�

1
q /�

ˇ
˛Cˇ�1kz.s/kp ds

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
p�

1
q /�

ˇ
˛Cˇ�1 sup

0<s�t

kz.s/kp ds

� Ct
�
nˇ
˛ .

1
p�

1
q /�

ˇ
˛Cˇ sup

0<s�t

kz.s/kp; (3.3)
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since �nˇ
˛
. 1
p
�
1
q
/ � ˇ

˛
C ˇ > 0. The relation 1

r
D

1
p
C

1
q
< 1 defines the exponent r 2

.1; p/. Let us fix the exponents p and q such that p > pc and q > n
˛�1

. This will imply
that �4 D1 and

�
nˇ

˛

�
1

r
�
1

p

�
�
ˇ

˛
C ˇ D �

nˇ

˛

�
1

q

�
�
ˇ

˛
C ˇ > 0: (3.4)

Next, we obtain the estimate for the bilinear form B . Again, we use (v) of Proposition 2.5
with r 2 .1; p/ and p 2 Œr; � 04/, where

� 04 D
rn

nC r.1 � 2˛/

if n > r.2˛ � 1/ or � 04 D1, otherwise. In either case, � 04 � �4:

kB.u; z/.t/kp �

Z t

0



r � .T ˇ˛ .t � s/.u.s/Lz.s///

p ds

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1ku.s/Lz.s/kr ds:

Then, applying Hölder’s inequality and using (3.3), we get

kB.u; z/.t/kp

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1ku.s/kpkLz.s/kq ds

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1s

�
nˇ
˛ .

1
p�

1
q /�

ˇ
˛Cˇku.s/kp sup

0<s�t

kz.s/kp ds: (3.5)

From (3.4) and 1
p
�
1
q
< ˛�1

n
, we obtain the following estimate:Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1s

�
nˇ
˛ .

1
p�

1
q /�

ˇ
˛Cˇ ds

D B

�
�
nˇ

˛

�
1

p
�
1

q

�
�
ˇ

˛
C ˇ C 1;�

nˇ

˛

�
1

q

�
�
ˇ

˛
C ˇ

�
� t
�
nˇ
˛

�
1
p

�
�
2ˇ
˛ C2ˇ ; (3.6)

where B denotes the beta function and is defined byZ b

a

.t � a/x�1.b � t /y�1 dt D .b � a/xCy�1B.x; y/; x > 0 and y > 0:

Since p > n
2˛�2

implies that �nˇ
˛
. 1
p
/ � 2ˇ

˛
C 2ˇ > 0, taking supremum on both sides

of (3.5) and then using (3.6) yields

sup
0<t�T

kB.u; z/kp � CkukC.Œ0;T �ILp.Rn//kzkC.Œ0;T �ILp.Rn//T
�
nˇ
˛

�
1
p

�
�
2ˇ
˛ C2ˇ :
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Similarly, we have

kH.u/kp �

Z t

0

kr � .T ˇ˛ .t � s/.u.s/rS
ˇ
˛ .s/v0//kp ds

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1ku.s/rSˇ˛ .s/v0kr ds:

Then, applying Hölder’s inequality and Proposition 2.5, we get

kH.u/kp �

Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1ku.s/kpkr

ˇ
˛ v0kq ds

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1ku.s/kpkrv0kq ds

� Ckrv0kqku.s/kpt
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ : (3.7)

Hence,

sup
0<t�T

kH.u/kp � Ckrv0kqkukC.Œ0;T �ILp.Rn//T
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ :

Next, we claim thatB.u;z/ 2C.Œ0;T �;Lp.Rn//. Let r be as above and using Hölder’s
inequality, we get

w.s/ D u.s/Lz.s/ 2 C.Œ0; T �ILr .Rn//:

Now, for some t > 0 and ı > 0, select 0 � t < t C ı � T and ı1 > 0, and then, we have

kB.u; z/.t C ı/ � B.u; z/.t/kp

D





 Z tCı

0

rT ˇ˛ .t C ı � s/w.s/ ds �
Z t

0

rT ˇ˛ .t � s/w.s/ ds





p

�





 Z tCı

max¹0;t�ı1º
rT ˇ˛ .t C ı � s/w.s/ ds






p

C





 Z t

max¹0;t�ı1º
rT ˇ˛ .t � s/w.s/ ds






p

C





 Z max¹0;t�ı1º

0

�
rT ˇ˛ .t C ı � s/ � rT

ˇ
˛ .t � s/

�
w.s/ ds






p

: (3.8)

The first two terms in the right-hand side of (3.8) can be estimated as in (3.5) and con-

trolled by CkwkC.Œ0;T �ILr .Rn//.ı C ı1/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ . The third term ! 0 as ı ! 0.

Hence, B.u; z/ 2 C.Œ0; T �; Lp.Rn//. Similarly, we can show that

H.u/ 2 C.Œ0; T �; Lp.Rn//:

Now, we by an application of Lemma 2.7, we get the existence of a mild for small T .
Note that, from (3.3), we get v 2 C.Œ0; T �ILq.Rn//.
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Now, suppose that Tm is the maximum existence time and Tm <1; then, the contra-
diction argument as in [42] yields

lim sup
t!T�m

ku.�; t /kp D C1

and
lim sup
t!T�m

krv.�; t /kq D C1:

This completes the proof.

3.2. Global existence

Note that the Lr -Lq estimate of S˛
ˇ

in Proposition 2.5 implies that

sup
0�t�T

�
kS˛ˇ .t/ukp C t

nˇ
˛ .

1
p�

1
r /kS˛ˇ .t/ukr

�
� Ckukp

for r 2 Œp; �1/. Using this, we define the modified norm for u 2 C.Œ0; T �ILp.Rn// as
follows:

kukp;rIT WD sup
0�t�T

�
kS˛ˇ .t/ukp C t

nˇ
˛ .

1
p�

1
r /kS˛ˇ .t/ukr

�
� Ckukp: (3.9)

Proof of Theorem 1.2. Let us fix T 2 .0;1/ and consider the space X WD XT with the
norm

k � kX D k � kpc ;pIT :

One can easily check that this is a Banach space.
By (i) of Proposition 2.5, we have Sˇ˛ u0 2 C.Œ0; T �ILpc .Rn// for any T > 0, and

by (3.9), we find that
kSˇ˛ u0kX � Cku0kpc � Cı:

Hence, Sˇ˛ u0 2 X . Now, we show that the bilinear form B is continuous. For that, we use
(v) of Proposition 2.5:

kB.u; z/.t/kpc �

Z t

0



r � .T ˇ˛ .t � s/.u.s/Lz.s///

pc ds

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
`
� 1
pc
/�

ˇ
˛Cˇ�1ku.s/Lz.s/k` ds

� C

Z t

0

.t � s/
�
nˇ
˛ .

1
l
� 1
pc
/�

ˇ
˛Cˇ�1ku.s/kpckLz.s/kp ds:

Here, we need n`
nC`.1�2˛/

D �4 > pc > ` � 1. Note that pc > ` � 1 ensures Hölder’s
inequality, where

p D
pcl

pc � l
:
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Assume p > pc , i.e., ` > pc
2

. Again, using (v) of Proposition 2.5, we have

kL.z.t//kp �

Z t

0

krT ˇ˛ .t � s/z.s/kp ds

� C

Z t

0

.t � s/
�ˇ
˛ Cˇ�1kz.s/kp ds

� C

Z t

0

.t � s/
�ˇ
˛ Cˇ�1 sup

0�s�t

kz.s/kp ds

� Ctˇ�
ˇ
˛ sup
0�s�t

kz.s/kp:

Therefore,

kB.u; z/kpc � C

Z t

0

.t � s/
�
nˇ
˛ .

1
l
� 1
pc
/�

ˇ
˛Cˇ�1sˇ�

ˇ
˛ ku.s/kpc sup

0�s�t

kz.s/kp ds

� Ckz.s/kXku.s/kX

Z t

0

.t � s/
�
nˇ
˛ .

1
l
� 1
pc
/�

ˇ
˛Cˇ�1s

nˇ
˛ .

1
p�

1
pc
/Cˇ�

ˇ
˛ ds

� Ckz.s/kXku.s/kX :

Note that pc
2
< ` < pc implies that 1

p
�

1
pc
< 1
pc

, and hence, �nˇ
˛
.1
`
�

1
pc
/� ˇ

˛
C ˇ > 0.

Also, since p > pc , it is true that nˇ
˛
. 1
p
�

1
pc
/ C ˇ � ˇ

˛
> �1. This ensures that the

integrals with respect to s converge.

Now, multiplying both sides of inequality (3.5) by t
nˇ
˛ .

1
pc
� 1p /, we get

t
nˇ
˛ .

1
pc
� 1p /kB.u; z/.t/kp

� Ct
nˇ
˛ .

1
pc
� 1p /

Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1s

�
nˇ
˛ .

1
p�

1
q /�

ˇ
˛Cˇku.s/kp sup

0<s�t

kz.s/kp ds

� C

�
t
nˇ
˛ .

1
pc
� 1p / sup

0�s�t

kz.s/kp

�
�

�Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1s

�
nˇ
˛ .

1
p�

1
q /�

ˇ
˛Cˇku.s/kp ds

�
:

In order to make sure the above inequalities hold, we need p and q to satisfy the
conditions of Theorem 1.1. However, as we know p > pc , these conditions are satisfied
automatically. We then find that

t
nˇ
˛ .

1
pc
� 1p /kB.u; z/.t/kp

� Cku.s/kXkz.s/kX

�Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1s

�
nˇ
˛ .

1
p�

1
q /�

ˇ
˛Cˇ s

nˇ
˛ .

1
p�

1
pc
/ ds

�
� Cku.s/kXkz.s/kX

�Z t

0

.t � s/
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ�1s

nˇ
˛ .

1
q�

1
pc
/�

ˇ
˛Cˇ ds

�
:
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For this integral to converge, we need �nˇ
˛
.1
r
�
1
p
/� ˇ

˛
C ˇ > 0, and nˇ

˛
. 1
q
�

1
pc
/� ˇ

˛
C

ˇ > �1. With our assumptions on p, q, and r , both inequalities hold.
The proof ofB.u;z/2C.Œ0;T �;Lpc .Rn//\C.Œ0;T �;Lp.Rn// is similar to the one in

Theorem 1.1. Therefore, we omit the details here. Since we are assuming v0D 0, therefore
H D 0. Now, using Lemma 2.7, we get the required existence and uniqueness of the mild
solution.

Proof of Theorem 1.3. Consider the space

X D C.Œ0; T �IL1.Rn// \ C.Œ0; T �ILp.Rn//

with the norm

kukX D sup
0�t�T

.kuk1 C kukp/:

Then, X is a Banach space. It is easy to see that, for any r 2 Œ1; p�, kukC.Œ0;T �ILr .Rn// �

kukX . By Proposition 2.5, we get

kSˇ˛ .t/u0kX D sup
0�t�T

�
kSˇ˛ .t/u0k1 C kS

ˇ
˛ .t/u0kp

�
� ku0k1 C ku0kp:

Let p1 2 Œ p
p�1

; p�, which implies that p1
p1�1

2 Œ p
p�1

; p�. Then, by Proposition 2.5, we
have

kLz.t/k p1
p1�1
�

Z t

0



rT ˇ˛ .t � s/z.s/

 p1
p1�1

ds

� C

Z t

0

.t � s/�
ˇ
˛Cˇ�1kz.s/k p1

p1�1
ds

� C

Z t

0

.t � s/�
ˇ
˛Cˇ�1 sup

0<s�t

kz.s/k p1
p1�1

ds

� Ct�
ˇ
˛Cˇ sup

0<s�t

kz.s/k p1
p1�1

: (3.10)

Then, for any 0 � t � T , using Proposition 2.5 with q D r D 1, we obtain

kB.u; z/k1 �

Z t

0



r � T ˇ˛ .t � s/u.s/Lz.s/

1 ds

� C

Z t

0

.t � s/�
ˇ
˛Cˇ�1ku.s/Lz.s/k1 ds:

Then, applying Hölder’s inequality and using (3.10), we get

kB.u; z/k1 � C

Z t

0

.t � s/�
ˇ
˛Cˇ�1ku.s/kp1kLz.s/k p1

p1�1
ds

� C

Z t

0

.t � s/�
ˇ
˛Cˇ�1s�

ˇ
˛Cˇku.s/kp1 sup

0<s�t

kz.s/k p1
p1�1

ds

� CkukXkzkXT
�
2ˇ
˛ C2ˇ :
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Similarly, we have

kH.u/k1 �

Z t

0

kr � .T ˇ˛ .t � s/.u.s/rS
ˇ
˛ .s/v0//k1 ds

�

Z t

0

.t � s/�
ˇ
˛Cˇ�1ku.s/rSˇ˛ .s/v0k1 ds

� Ckrv0k

Z t

0

.t � s/�
ˇ
˛Cˇ�1ku.s/k1 ds

� Ckrv0kkukXT
ˇ�

ˇ
˛ :

Note that the constraint �4 > 1 is automatically satisfied here.
Now, assume 1 � p � q < �4, 0 < 1

p
�
1
q
< ˛�1

n
, and p 2 .pc ;1/, q 2 .2pc ;1/.

Then, using (3.3) through (3.6), we get

kB.u; z/kp � CkukXkzkXT
�
nˇ
˛ .

1
p /�

2ˇ
˛ C2ˇ :

Similarly, using (3.7), we have

kH.u/kp � Ckrv0kqku.s/kXT
�
nˇ
˛ .

1
r �

1
p /�

ˇ
˛Cˇ :

The claim that H.u/ and B.u; z/ 2 C.Œ0; T �; L1.Rn// \ C.Œ0; T �; Lp.Rn// can be
proved as in the proof of Theorem 1.1. For the sake of brevity, we omit the details here.
Then, H.u/ 2 X and B.u; z/ 2 X , and we get

kB.u; z/kX � CT
ı
kukXkvkX

and
kH.u/kX � CT

�
kukX

for some positive numbers ı and � . Now, we can use Lemma 2.7 to get the existence and
uniqueness for small time. Now, integrating the first equation of (3.2) yieldsZ

Rn

u.x; t/ dx D
Z

Rn

Sˇ˛ u0 dx �
Z

Rn

Z t

0

r � .T ˇ˛ .t � s/.urv// ds dx:

But by [42, Lemma 3.1], we haveZ
Rn

Sˇ˛ u0 dx D
Z

Rn

u0 dx:

Using the density of C1c -space in the L1-space, one can approximate urv with some
sequence ¹�kº � C1c ..0; t � �Rn/. Now, Green’s identity implies thatZ

Rn

Z t

0

r � .T ˇ˛ .t � s/.�k// ds dx D 0
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for each k � 1. Hence, Z
Rn

Z t

0

r � .T ˇ˛ .t � s/.urv// ds dx D 0:

Thus, Z
Rn

u.x; t/ dx D
Z

Rn

u0.x/ dx:

Again, using [42, Lemma 3.1], we inferZ
Rn

v.x; t/ dx D
Z

Rn

Eˇ .�t
ˇA/v0 dxC

Z
Rn

Z t

0

.t � s/ˇ�1Eˇ;ˇ .�.t � s/
ˇA/u.s/ ds dx

D

Z
Rn

v0 dx C
1

�.ˇ/

Z t

0

.t � s/ˇ�1
�Z

Rn

u.x; t/ dx
�

ds

D

Z
Rn

v0 dx C
tˇ

ˇ�.ˇ/

Z
Rn

u0 dx:

This proves that the integrals are preserved. The proof of statement (ii) follows the similar
lines of proof as Theorem 1.1. Here, we skip the details of proofs of both statements.

3.3. Existence in the weighted space

Here, we study the existence of mild solutions to (1.7) in the weighted spaces. Define

L1� .R
n/ WD ¹v 2 L1.Rn/ j kvkL1� WD k.1C jxj/

�v.x/k1 <1º;

XT WD L
1.Œ0; T �; L1nC˛.R

n//:

Proof of Theorem 1.4. The proof of this theorem follows exactly on the similar lines of
proof of [42, Theorem 4.5]. The only difference is the L1-estimate for L.z/.t/. For the
sake of completeness, we write the necessary details. Note that

kukL1nC˛ <1 implies that u 2 L1.Rn/ \ L1.Rn/:

This inequality together with Proposition 2.6 implies that

kSˇ˛ .�/u0k � C.1C T
ˇ /ku0kL1nC˛ :

Using (i) of Proposition 2.5, we have

jL.z/.t/j �

ˇ̌̌̌ Z t

0

rT ˇ˛ .t � s/z.s/ ds
ˇ̌̌̌

�

Z t

0

jrT ˇ˛ .t � s/z.s/j ds

� C

Z t

0

.t � s/�
ˇ
˛Cˇ�1kzk1 ds

� Ct�
ˇ
˛CˇkzkXT :
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This inequality leads us to the following estimate for B:

kB.u; z/kXT D ess sup
x2Rn

.1C jxj/nC˛
ˇ̌̌̌ Z t

0

r �
�
T ˇ˛ .t � s/.u.s/Lz.s//

�
ds
ˇ̌̌̌

�

Z t

0



r � �T ˇ˛ .t � s/.u.s/Lz.s//�

L1nC˛ ds

� C

Z t

0

�
.t � s/�

ˇ
˛Cˇ�1kuLz.s/kL1nC˛ C .t � s/

�
ˇ
˛C2ˇ�1kuLz.s/k1

�
ds

� Ct2ˇ�
2ˇ
˛ kukXT kzkXT C Ct

3ˇ�
2ˇ
˛ kukXT kzkXT :

Similarly, we have

kH.u/kXT

D ess sup
x2Rn

.1C jxj/nC˛
ˇ̌̌̌ Z t

0

r �
�
T ˇ˛ .t � s/.u.s/rS

ˇ
˛ .s/v0/

�
ds
ˇ̌̌̌

�

Z t

0



r � �T ˇ˛ .t � s/.u.s/rSˇ˛ .s/v0/�

L1nC˛ ds

� C

Z t

0

�
.t � s/�

ˇ
˛Cˇ�1



urSˇ˛ .s/v0

L1nC˛ C .t � s/� ˇ˛C2ˇ�1

urSˇ˛ .s/v0

1� ds:

Now, we have

urSˇ˛ .s/v0

L1nC˛ D 

.1C jxj/nC˛u.s/rSˇ˛ .s/v0

1
� CkukXT krv0k1

and 

urSˇ˛ .s/v0

L1nC˛ � Ckuk1

rSˇ˛ .s/v0

1
� CkukXT krv0k:

Thus,
kH.u/kXT � Ct

ˇ�
ˇ
˛ kukXT C Ct

2ˇ�
ˇ
˛ kukXT :

Now, we use Lemma 2.7 to get the existence of solution. We refer to the proof of [42,
Theorem 4.5] for the remaining details of this theorem.

Remark 3.2. Note that if the initial values u0 and v0 of (1.7) are nonnegative, then it
implies that the solution .u; v/ obtained in Theorem 1.1 (or Theorem 1.2, Theorem 1.3,
Theorem 1.4) remains nonnegative. The proof of this statement follows the similar lines
of proof of [42, Theorem 5.1]. The only change we need to make is to replace B.u/
in [42, Theorem 5.1] with L.u/ � rSˇ˛ .�/v0. Due to this change, we cannot use the
Hardy–Littlewood–Sobolev inequality to control L.u/ � rSˇ˛ .�/v0. Instead, one can use
the Hölder’s inequality and the Lq estimates of rv to control L.u/ � rSˇ˛ .�/v0.
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Next, in the appendix, we re-collect the integral representation of solutions to frac-
tional parabolic-parabolic Keller–Segel system, which is easy to see. Some special cases
of it are used by several researchers in different contexts and can be found out in the
literature. For the sake of completeness, we write the details.

A. Appendix

Following [52], using Laplace transform, we show the integral representation of solution
to the system. For this, let us consider the first equation of (1.7) with A D .��/˛=2 and
f D r � .urv/. Taking Laplace transform on both sides and invoking

L.ctD
ˇ
t u/.s/ D s

ˇLu.s/ � sˇ�1u.0/;

we get

sˇLu.s/C ALu.s/ D sˇ�1u0 CLf .s/:

This implies that

Lu.s/ D sˇ�1.sˇ C A/�1u0 C .s
ˇ
C A/�1Lf .s/: (A.1)

Now, applying the inverse Laplace transform to (A.1), we get

u.t/ D L�1
�
sˇ�1

sˇ C A

�
u0 CL�1

�
1

sˇ C A
Lf .s/

�
: (A.2)

It is well known that (see [43])Z 1
0

e�st tm˛Cˇ�1E
.m/

˛;ˇ
.˙at˛/ dt D

mŠs˛�ˇ

.s˛ � a/mC1
;

L�1
�

s˛
�ˇ

.s˛ C a/


�
D tˇ�1E




˛;ˇ
.�at˛/;

(A.3)

where Re.s/ > 0, Re.˛/ > 0, Re.ˇ/ > 0. Using these equalities and the convolution the-
orem, (A.2) becomes

u.t/ D Eˇ .�t
ˇA/u0 C

Z t

0

.t � s/ˇ�1Eˇ;ˇ .�.t � s/
ˇA/f .s/ ds:

Similarly, taking Laplace transform of the second equation of (1.7), we get

sˇLv.s/C ALv.s/ D sˇ�1v.0/CLu.s/:

After simplification, it follows that

Lv.s/ D
sˇ�1

sˇ C A
v0 C

1

sˇ C A
Lu.s/: (A.4)
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Then, using (A.3), the integral representation of the solution to the second equation of
(1.7) can be rewritten as

v.t/ D Eˇ .�t
ˇA/v0 C

Z t

0

.t � s/ˇ�1Eˇ;ˇ .�.t � s/
ˇA/u.s/ ds

by applying the inverse Laplace transform to (A.4).
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