Landau–Ginzburg potentials via projective representations

  • Daniel Labardini-Fragoso

    Universidad Nacional Autónoma de México, Ciudad de México, Mexico
  • Bea de Laporte

    Universität zu Köln, Köln, Germany
Landau–Ginzburg potentials via projective representations cover

A subscription is required to access this article.

Abstract

We interpret the Landau–Ginzburg potentials associated to Gross–Hacking–Keel–Kontsevich’s partial compactifications of cluster varieties as -polynomials of projective representations of Jacobian algebras. Along the way, we show that both the finite-dimensional projective and the finite-dimensional injective representations of Jacobian algebras are well behaved under Derksen–Weyman–Zelevinsky’s mutations of representations.

Cite this article

Daniel Labardini-Fragoso, Bea de Laporte, Landau–Ginzburg potentials via projective representations. J. Comb. Algebra (2024), published online first

DOI 10.4171/JCA/98