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Deformation and K -theoretic index formulae on
boundary groupoids

Yu Qiao and Bing Kwan So

Abstract. Motivated by investigating K-theoretic index formulae for boundary groupoids of the
form
H =My x MgUG XMy xMi =M= Myu M,

where G is an exponential Lie group, we introduce the notion of a deformation from the pair
groupoid, which makes sense for general Lie groupoids. Once there exists a deformation from the
pair groupoid for a (general) Lie groupoid § = M, we are able to construct explicitly a deformation
index map relating the analytic index on § and the index on the pair groupoid M x M, which in
turn enables us to establish index formulae for (fully) elliptic (pseudo)differential operators on F
by applying the numerical index formula of M. J. Pflaum, H. Posthuma, and X. Tang. In particu-
lar, we find that the index is given by the Atiyah—Singer integral but does not involve any n-term
in the higher codimensional cases. These results recover and generalize our previous results for
renormalizable boundary groupoids via renormalized traces.

1. Introduction

The Atiyah—Singer index theorem, one of the greatest mathematics achievements in the
twentieth century, states that the analytic index of an elliptic differential operator is equal
to its topological counterpart.

There have been many results generalizing the Atiyah—Singer index theorem to other
pseudodifferential calculi, constructed for different purposes [2, 7, 20, 23, 30, 36]. These
pseudodifferential calculi can be realized as groupoid pseudodifferential calculi on certain
groupoid § == M with M compact. Then the subalgebras of operators of order zero and
—oo can be completed to C*-algebras U(¥) and C*(¢), respectively, yielding the short
exact sequence

0— C*(§) - U - u/Cc*¥) — 0. (1.1)

After passing to the six-term exact sequence, one defines the analytic index of any elliptic
operator to be its image in Ko(C* (%)) under the boundary map. For continuous fam-
ily groupoids, the analytic index is similarly defined by Lauter, Monthubert, and Nistor
in [25].
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In the 1990s, Connes gave a “Lie groupoid proof” of the Atiyah—Singer index theorem
in his famous book [17, Section 2]. As the starting point, given a closed manifold M,
Connes constructed the so-called tangent groupoid, which is a kind of deformation of
the pair groupoid M x M. This construction induces a map (which we shall denote by
indg (arxar) below) from the Ko-group of the tangent bundle to

Ko(C™(M x M)) = Ko(X).

where JK denotes the C *-algebra of compact operators. Applying a mapping cone argu-
ment as described in, for example, [32, Theorem 1.2] and [12, Section 4.1], one proves that
the index map corresponding to (1.1) is equal to indg(asxary composed with the principal
symbol. Next, Connes constructed a topological index map, by embedding M into RY
for some large enough N, and by considering Thom isomorphism and Morita equivalence
(between groupoids). Then he showed that these two index maps coincide.

Connes’ proof of the Atiyah—Singer index theorem triggered a large number of sub-
sequent works in index theory through Lie groupoids. For instance, based on the analysis
and index problems on manifolds with corners, many groupoids were constructed [9, 11,
20,27,31,35]. These constructions and index theorems depend heavily on the existence
of boundary defining functions and embedding the manifold under question into a cube
instead of R™Y . Meanwhile, Androulidakis and Skandalis associate the holonomy groupoid
to a singular foliation and investigated corresponding properties [3], which opens the door
to explore singular foliations via Lie groupoids. Alternatively, one can study the simplified
index problem on Lie groupoids by pairing with cohomology [10, 16,37-39].

To study the Fredholm index of fully elliptic operators on manifolds with bound-
ary, Carrillo Rouse, Lescure, and Monthubert replace the tangent bundle in the adiabatic
groupoid construction by some “non-commutative tangent bundle” [10]. In that case, it
is (the C *-algebra of) a subgroupoid of the adiabatic groupoid of the b-stretched product
groupoid associated to a manifold M with boundary M ; explicitly,

My xM; xR)x (0,1)UTM x {0} = M x[0,1]

(it is a continuous family groupoid). Similar arguments are utilized by Debord, Lescure,
and Nistor for the case of conical pseudomanifolds [19].

In this paper, we consider index formulae for pseudodifferential operators on Lie
groupoids #/ = M with two orbits, which are isomorphic as abstract groupoids (i.e.,
sets with groupoid operations) to

Mo x Mo UG x My x My = MogU M, =M, (1.2)

where My = M \ M; is an open dense subset, and where G x M; x My = M is the
product of the pair groupoid M; x M and the Lie group G as a groupoid over a single
point. We shall further assume that the isotropy group G is an exponential Lie group, of
dimension equal to the codimension of the manifold M in M.
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Definition 1.1. In this paper, we shall call these Lie groupoids boundary groupoids with
two leaves and exponential isotropy. Throughout the paper, we shall use & == M to
denote such a groupoid.

Note that a groupoid of the form (1.2) may carry different Lie groupoid structures, and
we shall regard them as different objects (see Proposition 3.3 and Example 3.5 below).
These Lie groupoids are the simplest example of boundary groupoids [42], and are often
holonomy groupoids integrating some singular foliations [1,2,4,5,18]. In this case, it is not
clear whether an embedding analogous to the manifold with corners exists. Fortunately,
the K-theory of these Lie groupoid C*-algebras is computed in [12]. Namely, for all
boundary groupoids with two leaves and exponential isotropy # = M, we have

Ko(C*(H)) =~ Z and K, (C*(H)) = Z, if My is of odd codimension > 3;
Ko(C*(H)) = Z & Z and K, (C*(H)) = {0}, if M, is of even codimension,

regardless of Lie structures (see (2.1) below). Hence in order to derive an index formula
for elliptic operators (or just their principal symbols), it suffices to produce one integer in
the odd codimension case and two integers in the even codimension case, which would
completely describe its index in Ko(C *(H#)). Moreover, the pushforward induced by the
extension map

Ko(C* (M x M) —2 Ko(C*(30))

is an isomorphism in the odd case and is injective in the even case. This implies that the
Fredholm index of a fully elliptic operator on # is also determined by its Ko(C*(H))
index.

In the special case when a renormalized trace can be defined, one can derive an index
formula [40] using renormalization techniques similar to that of [33]. It was found that in
the odd case with codimension > 3, the n-term of the renormalized index formula van-
ishes; hence both the Fredholm index and the Ko(C*(#)) index are just given by the
Atiyah—-Singer integral. Moreover, one could expect a deeper description of the relation-
ship between the isomorphism Ke¢(C*(M x M)) == Ko(C*(#)) and the vanishing of the
n-term, which we shall prove in this paper.

In this paper, we take a different approach. Denote by § == M a general Lie groupoid
with unit space M . We shall introduce the notion of a deformation from the pair groupoid
(see Definition 3.1), where we deform the pair groupoid M x M to our desired groupoid
Y = M. Here, we would like to point out two major differences between our definition
and that for the tangent groupoid and the adiabatic groupoid, even for the construction of
the deformation to the normal cone [21-23]:

(1) For the tangent groupoid, the fiber at t = 0 is the tangent bundle of M ; whereas,
for a deformation from the pair groupoid, the fiber at ¢+ = 0 is the groupoid 9,
usually not a vector bundle.
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(2) Given a closed manifold M, there is always the associated tangent groupoid; but a
deformation from the pair groupoid for § = M may not exist. (Thus, we exploit a
little obstruction theory for the existence of a deformation from the pair groupoid.)

Hence, unlike the tangent groupoid and adiabatic groupoid, our idea seems to go back-
wards. That is, given a Lie groupoid § = M, we ask if § == M can be obtained by
deforming the pair groupoid M x M in other words, we are looking for a bigger Lie
groupoid D which realizes such a deformation.

For a Lie groupoid § = M, once a deformation D from the pair groupoid M x M
exists, we shall construct a deformation index map

indg : Ko(C*(§)) > Ko(C*(M xM =3 M)) = Z,
which is the key ingredient to establish the following theorem.

Theorem 1.2 (Theorem 3.8). Let § == M be a Lie groupoid and A the associated Lie
algebroid of §. Suppose that a deformation D from the pair groupoid M x M exists.
Then one has the commutative diagram

indg (g)

Ko(C*(A4)) Ko(C*(%))

J; lmd,@

indg (arx M)

Ko(CH(TM)) ————— Ko(C*(M x M)),

where the top map is just the analytic index map constructed via the adiabatic groupoid
and the bottom map is the Atiyah—Singer index.

The above theorem can be used to simplify index problems on Lie groupoids to those
on the pair groupoid of the unit space. In particular, for a boundary groupoid with two
orbits and exponential isotropy, we have the following theorem, which identifies index
maps on such groupoids.

Theorem 1.3 (Theorem 3.9). Suppose that #H = M is any boundary groupoid with two
orbits and exponential isotropy, and that a deformation from the pair groupoid exists for
H. Then the composition

% £3¢,M % indp %
is an isomorphism.

As applications, we apply the pairing considered in [38] to obtain our index formulae
on boundary groupoids with two leaves and exponential isotropy.

Theorem 1.4 (Theorems 4.3 and 4.6). Suppose that # = M is any boundary groupoid
with two orbits and exponential isotropy, and that a deformation from the pair groupoid
exists for K. Let ¥ be an elliptic pseudodifferential operator on J. One has the following
index formulae:
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(1) Ifdim G > 3 is odd, then

1nd(W) = indT(MxM)(a[o(!I/)]) = /;~*M <1‘i(T*M) A Ch(O’[lp]), Qn!TM);

(2) Ifdim G is even, then
ind(¥) :/ (/f(T*M) A ch(o[¥]), Qi)
T*M
® [ (AT M © ) A1), Dyipy)
T* M xg

where g is the Lie algebra of G.

Again, it is interesting to observe that the above index formulae do not depend on the
Lie structure of the boundary groupoid in question.

1.1. Structure of the paper

Section 2 is devoted to reviewing basic definitions and facts related to Lie groupoids, such
as Lie algebroids, boundary groupoids, submanifold groupoids, and the tangent groupoid.
In Section 3, given a Lie groupoid § = M, we define the notion of a deformation from the
pair groupoid to §, show that such a deformation exists for submanifold groupoids, and
briefly discuss obstructions to the existence of such deformation groupoids. Then, under
the assumption that a deformation O from the pair groupoid to § exists, we construct
explicitly an index map

indg : Ko(C*(8)) — Ko(C*(M x M)) = Z,

which is similar to that of the tangent (or adiabatic) groupoid, and show that it is com-
patible with the analytic index map, and hence implies Theorem 1.2. Finally, in Section
4, after reviewing the Atiyah—Singer formula appearing in [38], we combine these results
with Theorem 1.2 to establish index formulae for (fully) elliptic (pseudo)differential oper-
ators on boundary groupoids with two orbits and exponential isotropy # = M. These
index formulae are essentially the Atiyah—Singer formula; hence we give a K-theoretic
proof of the results in [40] without using a renormalized trace.

2. Preliminaries
2.1. Lie groupoids, Lie algebroids, pseudodifferential operators on Lie groupoids,
and groupoid C *-algebras

We first review some basic knowledge of Lie groupoids, Lie algebroids, pseudodifferential
calculus on Lie groupoids, and groupoid C *-algebras [2,25,26,28,29,32,36,41,42].

Definition 2.1. A Lie groupoid § = M consists of the following data:



Y. Qiao and B. K. So 6

(i) manifolds M, called the space of units, and §;
(i)  aunit map (inclusion)u: M — §;
(iii) submersions s,t:§ — M, called the source and target maps respectively, sat-
isfying
sou=1idy =tou;
(iv) amultiplication mapm : @ :={(g,h) € ¢ x & : s(g) =t(h)} - &, (g.h) —
gh, which is associative and satisfies

s(gh) =s(h), t(gh) =1t(g), guos(g)) =g = (uot(g))g:

(v) aninverse diffeomorphismi:§ — ¢, g+ g = g~ !, such that s(g™!) = t(g),
t(g™") = s(g), and

gg~ ' =ut(@), g 'g=u(s().
All maps above are assumed to be smooth.

Definition 2.2. A homomorphism between Lie groupoids § == M; and # = M, is by
definition a functor ¢ : § — J¢ which is smooth both on the unit space M; and on §. Two
Lie groupoids § and # are said to be isomorphic if there are homomorphisms ¢ : § — H
and ¥ : J/ — & such that ¢ o ¢ and ¢ o ¢ are identity homomorphisms on & and
respectively.

Lie groupoids are closely related to Lie algebroids. Here we recall the definition.

Definition 2.3. A Lie algebroid A over a manifold M is a vector bundle A over M,
together with a Lie algebra structure on the space I'*°(A) of the smooth sections of A and
a bundle map v : A — TM, called the anchor map, such that

[X, fY] = fIX.Y]+ (v(X) /)Y,
for all smooth sections X and Y of A and any smooth function f on M.

Given a Lie groupoid ¥ with units M, we can associate a Lie algebroid A() to § as
follows. (For more details, see [28,29].) The s-vertical sub-bundle of 7§ fors: & — M
is denoted by 75(¢) and called simply the s-vertical bundle for §. It is an involutive
distribution on ¥ whose leaves are the components of the s-fibers of §. (Here involutive
distribution means that 75(§) is closed under the Lie bracket, i.e., if X,Y € X(§) are
sections of 75(&), then the vector field [X, Y] is also a section of T5(%).) Hence we
obtain

T56¢ = Kers, = U TG, CTS.
xeM
The Lie algebroid of §, denoted by A(§) (or simply A sometimes), is defined to be
TS(§)| > the restriction of the s-vertical tangent bundle to the set of units M. In this
case, we say that § integrates A(§).
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Remark 2.4. Given a Lie algebroid A, there may not exist a Lie groupoid integrating
A. When A is almost regular (i.e., v has constant rank on an open dense subset of M),
Debord’s quasigraphoid construction can be used to integrate A [18]. If in particular A
is of the form as in (iv) of Definition 2.12 with gz solvable, then the resulting groupoid
(which is a quasigraphoid) is necessarily of the form

gz(M()XM())U(U,‘M,‘XMiXG),

as in (ii) of Definition 2.12. However, Debord’s quasigraphoid is not always Hausdorff.
Fortunately, the result of [12] follows from the composition series (see Lemma 2.11
below) and Thom isomorphism, which only requires G to be locally Hausdorff and M
to be Hausdorff.

If, furthermore, all leaves of A are simply connected, then Nistor’s gluing construction
[34] integrates A to a Hausdorff Lie groupoid § with simply connected s-fibers. Moreover,
uniqueness implies ¥ is again necessarily of the form as in (ii) of Definition 2.12.

Since we shall only consider almost-regular Lie algebroids, we can always integrate
them into Lie groupoids, where the K-theoretic calculation can be applied.

Example 2.5. The Lie algebroid of the pair groupoid M x M is the tangent bundle 7M
with the usual Lie bracket on vector fields, and the anchor map is the identity.

Let E — M be a vector bundle. Recall [36] that an m-th order pseudodifferential
operator on § is a right invariant, smooth family P = {Py}xep, Where each Py is an
m-th order classical pseudodifferential operator on sections of t* E — s~!(x). We denote
by W (§, E) (resp. D™ (8, E)) the algebra of uniformly supported, order m classical
pseudodifferential operators (resp. differential operators).

Recall [25] that one defines the strong norm for P € W°(¢, E) by

[Pl := sup [|o(P)].
P
where p ranges over all bounded *-representations of W°(¢, E) satisfying

ol = sup { [ ol [ et i

xeM

whenever P € W~ 4mM—1(g £ with (continuous) kernel kp.

Definition 2.6. The C*-algebras U(§) and C*(¢) are defined to be the completion of
WO(g, E) and U=°(¢, E) respectively with respect to the strong norm || - ||.

One also defines the reduced C *-algebras U, (§) and C* (§) by completing W0 (g, E)
and U~°(§, E) respectively with respect to the reduced norm

1Pl := sup {IPxllr2(s-1(x))}-
xXeEM

Recall that if the strong and reduced norms coincide, then § is called (metrically) amen-
able, which is the case for the groupoids we shall consider.
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2.2. Invariant submanifolds and composition series
Let ¥ == M be a Lie groupoid.
Definition 2.7. Let S be any subset of M. We denote by

gs =5 1S)NtT1(S)

the reduction of § to S. The reduction g is a subgroupoid of §. In particular, if S = {x},
then &, := §ys is called the isotropy group at x.

If S € M is an embedded submanifold such that s~1(S) = t~1(S), we say that S C¢ M
is an invariant submanifold.

Definition 2.8. Given a closed invariant submanifold S of ¥, for any groupoid pseudod-
ifferential operator P = {Py}xeym € V" (9, E), we define the restriction

P|§5(P) = {Px}xeﬁs € \pm(557E)

The restriction extends to a map from U(€) to U(Fs) and also from C*(§) to C*(Fs).
We denote both such restriction maps, and also the induced K-group homomorphisms,
by rg,s.

Notation 2.9. Let § =2 M be a Lie groupoid, and let U be an open subset of M. Then
Gy =s ' (U) Nt (U) = U is an open subgroupoid of §. Any element in C*(8y)
extends to C*(§) by 0. We denote such an extension map by eg y. It is a homomorphism
of C*-algebras and hence induces a map from Ko(C*(8y)) to Ke(C*(§)), which we
shall still denote by g 7.

Now suppose we are given a groupoid ¥ = M (with M not necessarily compact),
and invariant submanifolds Mgy, M1, ..., M,, such that their closures M; are also invariant
submanifolds that furthermore satisfy

MZMQDMlD"'DMr

(such a setting is natural for boundary groupoids in Definition 2.12 below). For simplicity,
we shall denote §; := §; . Denote by SA’ the sphere sub-bundle of the dual of the Lie
algebroid A(9) of §.

Definition 2.10. Let o : ¥™(§) — C*°(SA’) denote the principal symbol map. For each
i =1,...,r,define the joint symbol maps

ji V() > CP(SA) @ V(G),  Ji(P):=(0(P), Plg).

The map j; extends to a homomorphism from U(§) to Co(SA*) ® U(E;).
We say that P € U™ (9) is elliptic if o (P) is invertible, and it is called fully elliptic if
j1(P) is invertible (which implies P is elliptic).
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Denote by $o := ¥~1(§) C U(F), and denote by §; C U(F),i = 1,...,r, the null
space of jr—i+1.
By construction, it is clear that

oD D---D¢r.

Also, any uniformly supported kernel in W™ (47 \ ;0 E| M\ 1\71,) can be extended to
a kernel in W™*°(g,; E| Mi) by zero. This induces a x-algebra homomorphism from
C* (G, Mj) to C*(gz,). We shall use the following key fact.

Lemma 2.11. [25, Lemma 2 and Theorem 3] One has the short exact sequences
0= Ji+1 = $i = C*(Eygp\m,,,) — O,
0= C*(Fjg\m,) = C*(G) — C*(§) =0, Vj>i.

2.3. Boundary groupoids and submanifold groupoids

In this paper we are interested in some more specific classes of groupoids. To begin with,
let us recall the definition of boundary groupoids in [42,43].

Definition 2.12. Let § == M be a Lie groupoid with M compact. We say that § is a
boundary groupoid if:

(1)  The singular foliation defined by the anchor map v : A — T'M has finite number
of leaves My, M1, ..., M, C M (which are invariant submanifolds), such that
dimM = dim My > dimM; > --- > dim M,;

(i) Forallk =0,1,...,r, Mk = M} U-.--U M, is a closed submanifold of M ;

(iii) For k = 0, §y := G, is the pair groupoid, and for k = 1,2,...,r, we have
G = 8m, = G x My x My for some Lie group Gy;

(iv) Foreachk =0,1,...,r, there exists a unique sub-bundle /Ik C A| M such that
Ak |m, = Ker(vlp, ) (= gk X Mg).

Boundary groupoids are closely related to Fredholm groupoids and blowup groupoids.
Roughly speaking, Fredholm groupoids are those on which Fredholmness of a pseudod-
ifferential operator is completely characterized by its ellipticity and invertibility at the
boundary. For the definition and basic properties of Fredholm groupoids, one may consult
[13—15]. The basic result relevant to our discussion is that boundary groupoids are often
amenable and Fredholm groupoids.

Lemma 2.13. [26, see Lemma 7] For any boundary groupoid of the form § = (Mg X
Mo) U (RY x My x M),
C*(8)=C(9).

In other words, § is metrically amenable.

Moreover, as the additive group R is amenable, the product groupoid R? x M; x M,
is topologically amenable. By [15, Theorem 4.3], we have the following proposition.
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Proposition 2.14. The boundary groupoid § = (Mo x My) U (R x My x My) is a Fred-
holm groupoid.

Given a boundary groupoid, one naturally considers the sequence of invariant subman-
ifolds
M>DM;>---DM,,

where M; is given to be as in (ii) of Definition 2.12. We have the short exact sequence
* - * Q. * o . .
0—C (gM,-\M]-) - C*(%)—>C*(§)—0, Vj>i,
which induces the following K-theory six-term exact sequences.

Ki(C*(8m)) —— Ki(C*(§)) ——> Ki(C*(§i41))

T l @2.1)

Ko(C*(§i+1)) <—— Ko(C*(§)) «——— Ko(C*(8m,))

If r = 1, there is only one exact sequence in (2.1). Moreover, if G is solvable, connected,
and simply connected (i.e., exponential), then Connes’ Thom isomorphism readily gives
the K-groups of (the C *-algebra of) 51 = G x M; x M;. Using these facts, Carrillo
Rouse and the second author computed the K-theory of boundary groupoids with two
leaves and exponential isotropy, as follows.

Lemma 2.15. Suppose that a boundary groupoid § is of the form § = (My x My) U
(G x My x My) with G an exponential Lie group (i.e., § is a boundary groupoid with
two leaves and exponential isotropy). One has

Ko(C*(8)=Z and K1(C*(9))x=Z, if dim G > 3 odd,
Ko(C*(9) =Z®Z and Ki(C*(9)) ={0}, if dimG even.

Next, we recall submanifold groupoids, which form a subclass of boundary groupoids
in [12].

Example 2.16 (Submanifold groupoids). Suppose that M, is a closed embedded sub-
manifold of M of codimension ¢ > 2. Let f € C° (M) be any smooth function which
vanishes on M and is strictly positive over My = M \ M; (if M is connected then
My = M \ M is still connected and f must either be strictly positive or strictly negative
on My). Then there exists a Lie algebroid structure over

A =TM — M

with anchor map
(z,w) (z, f(z)-w), V(z,w)eTM,

and Lie bracket on sections

[X.Y]a, := fIX.Y]+ (X - )Y = (Y- f)X.
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This Lie algebroid is almost injective (since the anchor is injective, in fact an isomorphism,
over the open dense subset My = M \ M;), and hence it integrates to a Lie groupoid that
is a quasigraphoid (see [18, Theorems 2 and 3]).

By [18] or [34], A integrates to a Lie groupoid of the form

%:MoXMoLquXMlleZ;MZM()UMI,

a boundary groupoid with two leaves and exponential isotropy. This groupoid is called a
submanifold groupoid.

Example 2.17 (Renormalizable boundary groupoids). For even more specific examples
of submanifold groupoids, in [40], we considered

f=r"

for some fixed even integers N, where r := d(Mj, -) is the Riemannian distance function
from M; with respect to some metric. The resulting groupoid is called a renormalizable
boundary groupoid. In [40], it was shown that the n-term for renormalizable groupoids
vanishes in the index formula via the method of renormalized trace.

2.4. The tangent groupoid and the adiabatic groupoid

Let us recall that for a closed manifold M, Connes [17] constructed the tangent groupoid,
which is a Lie groupoid of the form

TMxM)y:=MxMx(0,1]uTM x{0} = M x[0,1],

where the differentiable structure of 7 (M x M) is defined by fixing some Riemannian
metric on M and then using the following maps from some open subsets of TM x [0, 1]
to T (M x M) as charts:

x(p, X,€) = (p,expp(—eX),e), fore > 0,
x(p, X,0) := (p, X,0).

The tangent groupoid construction generalizes to any Lie groupoid §. One considers
the adiabatic groupoid

T(8) =6 x(0,1]uAdx{0} = M x][0,1],

where A is the Lie algebroid of §. Debord and Skandalis [23] further generalized the
construction by replacing the set of units M C § with arbitrary subgroupoid # C ¢, and
considered gluing & 2, the normal bundle of # in €, to § x R \ {0}. The resulting object
is naturally a Lie groupoid, which they call the deformation to the normal cone.

For simplicity, we return to the case of the adiabatic groupoid 7 (¥). One naturally
constructs the index map

indy(g) := rrg),Mmx{1} ° r}%g),Mx{o}, (2.2)
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where r5g),mx{1}y : C*(T(§)) — C*(¥) and ryg),mxioy : C*(T(§)) = C*(A) are
respectively the restriction maps to the subgroupoids of 7 (¥) over M x {1} and M x {0}.

Let ¥ be any classical elliptic pseudodifferential operator on ¥ = M. Its principal
symbol o (¥) is an invertible element in C(SA’), where A’ is the dual bundle of 4 and SA’
denotes the sphere bundle of A’. We identify C(A’), the algebra of continuous functions
on A’ vanishing at infinity, with C*(A), the (fiberwise) convolution C *-algebra, through
Fourier transform to obtain

Ko(C(A) = Ko(C™(4)),

and let
d: K1 (SA") — Ko(C(A") = Ko(C*(A))

be the connecting map induced by the short exact sequence
0— C(A)— C(A) — (S4) >0

(where A’ denotes the bundle of solid balls in A’). Then by [12], the analytic index of ¥
is given by
ind7(g)(d[o (¥)]) € C*(9),

which, if ¥ is of order 0, coincides with the image of [¥] € K (U(¥)) under the connect-
ing map induced by the short exact sequence

0— C*(8) - U(g) — U/C*(E) — 0.

3. The deformation groupoid and the deformation index map

Motivated by the tangent groupoid construction in the previous section, we introduce the
following definition, which plays a central role in the paper.

Definition 3.1. Let § = M be a Lie groupoid, not necessarily a boundary groupoid. A
deformation from the pair groupoid M x M to § is a Lie groupoid & = M x [0, 1] that
is isomorphic as an abstract groupoid to

MxMx(0,1]ug =3 Mx0,1]uM
(where M x M x (0,1] = M x (0, 1] is the product of the pair groupoid and the set
(0, 1.

Example 3.2. Let M be a closed manifold. Regard TM — M as a Lie groupoid; then
Connes’ tangent groupoid, 7 (M x M), gives a deformation from the pair groupoid to
™.
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3.1. Construction of deformations from the pair groupoid
The following fact is another motivation to introduce the above definition.

Proposition 3.3. There exists a deformation from the pair groupoid for submanifold
groupoids defined in Example 2.16.

Proof. We use the same notation as in Example 2.16. To construct the groupoid & =
M x [0, 1], we begin with defining the Lie algebroid of £. We set fff — M x[0,1] to
be the vector bundle pullback of Ay (= TM). Sections of A # are just vector fields on
M x [0, 1] which are tangential to the M direction. Hence one can define the anchor map

v((z,s),w) = ((z,5),(f(z) +5)-w), V(z,w)eTM,se]0,1],
and Lie bracket on sections by

[X.¥]z, = (f +)X.Y]+ (X )Y (Y- f)X.

When restricted to M x {0}, the Lie algebroid A 7 | Mx{0} is isomorphicto As. On M x {s}
for each s > 0, since f + s is positive and bounded away from 0, v defines an isomorphism

Af |ppgsy = TM.

Using [18] and [34, Theorem 1], one observes that A s integrates to a Lie groupoid of the
form
D=HUMxM x(0,1]) = M x][0,1],

which is what we need. [

3.2. Obstructions to the existence of deformations from the pair groupoid

In this subsection we point out some notable necessary conditions for § in order for a
deformation from the pair groupoid to exist.

Proposition 3.4. Suppose that § = M is a Lie groupoid such that a deformation from
the pair groupoid exists. Denote by A the Lie algebroid of §. Then we have

A=TM,
as vector bundles.

Proof. Let D == M x [0, 1] be a deformation from the pair groupoid. Denote its Lie
algebroid by A — M x [0, 1]. Then one has

/I|Mx{0} = A’ /I|M><{1} =TM.

Hence an isomorphism can be constructed by, say, fixing a connection V on A and then
parallel transporting along the family of curves (p,t),t € [0, 1] foreach p € M. |
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The existence of a deformation from the pair groupoid also imposes necessary condi-
tions on the structural vector fields of & (i.e. the image of the anchor map). For simplicity,
we consider the case when M, is a single point {p}. Suppose a deformation £ from the
pair groupoid for ¢ exists. Denote the Lie algebroids of & and D by A4 and A respectively,
and their anchor maps by v and respectively v. Then it is obvious that

TM x (0, 1],
A.

/I‘MX(O,I] =

Al yroy =
Suppose that s is a nowhere vanishing local section of A around p, such that v(s)(p) = 0.
Then the section s extends to some nowhere vanishing local section § of A over an open
neighborhood of {p} x [0, 1]. Because V is injective except at (p, 0), it follows that v(5)
is a family of local vector fields on M parameterized by [0, 1], which is nonvanishing
on M x{t}, 1 >t > 0, and has an isolated zero at p on M x {0}. This implies that the
Hopf-Poincaré index of v(s) = \7(§)| Mx{0} equals zero. Hence, we are able to construct
the following counterexample which shows that a boundary groupoid may not possess a
deformation from the pair groupoid.

Example 3.5. Let S = {(x,y.,z) € R®: x2 + y2 + z2 = 1} be the 2-sphere. As a set,
we identify
S? = {(0,0,—1)} UR?
by stereographic projection. The vector fields
. 0 . 0
X:i=3, Y=g

on R? both extend smoothly to S? by 0. Indeed, using stereographic coordinates on
S2\ {(0,0, 1)}, one has

X = —(()? = ) — 200
and a similar expression for Y. These vector fields commute and together integrate to an
action of R? on S2, and one obtains the action groupoid § = S? x R2. Thus the structural
vector fields of the tangent Lie algebroid of & are spanned by {X, Y}, which contradicts
the above necessary condition that the Hopf—Poincaré index is equal to zero.

Lastly, note that the action groupoid R? x R? (by right translation) is isomorphic to
the pair groupoid R? x R?; therefore § is a boundary groupoid.

Remark 3.6. The discussion above exhibits that there are certain obstructions to the exis-
tence of such deformations for boundary groupoids. At present, we do not know of other
necessary or sufficient conditions that guarantee the existence of such deformations in
general, which will be left as future work.

3.3. The deformation index map

In this subsection, we always assume that a deformation from the pair groupoid

D:=6UMxMx(0,1)) = M x[0,1]
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exists for the given Lie groupoid § = M.
We shall use D to construct an index, similar to [17, 44]. Observe that O has closed
saturated subgroupoids D |prx0y = F. Dlmxg1y = M x M. Because the sequence

€D, Mx(0,1

Ko(C* (D prx0.1]) = Ko(C*(M x M x (0,1])) = 0 L Ko(C*(D))

7D, M x{0}

Ko(C*(9)) > Kei1 (C*(Dlarxo.n)) = 0

is exact, the map rp_px{o} is invertible, where the extension map €9 ax(o,1] is defined in
Notation 2.9, and the restriction map rp, ax{o} is defined in Definition 2.8.
Hence it is natural to introduce the following index map.

Definition 3.7. The deformation index map is defined to be
indp 1= rp Mx(1}© 'p prxqoy - Ke(C*(§)) = Ko(C*(M x M)).

Using this deformation index map indg, we establish the following ‘index compari-
son’ theorem, which is one of the main results in the paper.

Theorem 3.8. Let § = M be a Lie groupoid. Suppose there exists a deformation group-
oid D from the pair groupoid M x M. Then one has the commutative diagram

indff(g)

Ko(C*(4)) Ko(C*(9))

A [

indg (am x M)

Ko(CH(TM)) ———— Ko(C*(M x M)),

where the top map is just the analytic index map constructed via the adiabatic groupoid
and the bottom map is the Atiyah—Singer index.

Proof. Let T (D) = (M x [0, 1]) x [0, 1] be the adiabatic groupoid of D. Recall that as
aset, 7(D) =D x (0,1] U A. Hence T (D) restricted to (M x {0}) x [0, 1] and (M x
{1}) x [0, 1] are respectively

T(E) = Mx[0,1] =9 x(0,1]U 4,
and T(M xM) =M x[0,1]=M xM x(0,1]UTM,

the adiabatic groupoid of § (respectively the adiabatic groupoid of M x M). One can
further restrict 77 (§) and 7 (M x M) to M x {0} or M x {1}, resulting in the commutative
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diagram
T (§),M x{0} T (9),Mx{1}
C*(4) CH(T(¥9)) C* (%)
Tr/f,Mx(O) Trf(@),(Mx{o))x[o,l] T’@,Mx{o}
~ T (D),(M x[0,1]) x{0} 7T (D), (M x[0,1])x{1}
C*(A) x[0,1])x{0 C*(T(i))) x[0,1])x{1 C*(j))

lr/f,Mx{l) J/VT(éD),(Mx{l})x[O,l] J{r@,Mx{l)

C*(TM) C*(T(M x M)) C*(M x M).

TT (M xM),Mx{0} FT(MxM),Mx{1}

Then we pass to the corresponding K-group maps. Observe that r (), (ax{o})x[o0,1] fits
in the six-term exact sequence

ET(D),(Mx(0,1))x[0,1]
-

Ko(C(T (D) (ax(0,1)x[0,11) Ko (CH(T (D))

T'T (D),(M x{0})x[0,1]
- 5

Ke(C*(T(8)) — -+,
and moreover, we have
T (D) mx,1nx10,1] = T (Darxo,1) = T (M x M x (0,1]) = T (M x M) x (0,1],

whose convolution C*-algebra is contractible. Therefore the map r7 (), (amx{0})x[0,1] 1S

invertible. Similarly, we have that the maps 73 (g), arx{o} i Mx{oy TT(D),(Mx[0,1])x{0}>

F7(MxM),Mx{0}> and o prxqoy are all isomorphisms between corresponding K-groups.
Recall (2.2) that

. L -1
indg(g) :=r79),Mx{1} © ' (g), M x{0}>
indg (M x M) T=TT(MxM),Mx{1} © 7 (M x M), Mx{0}

are just Connes’ analytic index maps. Lastly, observe from the proof of Proposition 3.4
that A = A x [0, 1]. Hence for any u € C*(A) that is furthermore a Schwartz function, let
i € C*(A) be the pullback of u (i.e., # is just u on each A x {s}). Then

U ﬁ}Mx(l}

induces the K-theory map
_ -1
PAMx(1} T 4 Moy
(which is equivalent to identifying A = TM). Hence one ends up with the commutative
diagram
indg (g)

Ko(C*(4)) Ko(C*(9))

J; lmd@

indg (arx M)

Ko(CH(TM)) ————— Ko(C*(M x M)),

which completes the proof. ]
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We are in position to prove the following theorem for boundary groupoids with two
orbits and exponential isotropy, which implies Theorem 1.3. Recall that the restriction
map r and the extension map ¢ are defined in Definition 2.8 and Notation 2.9, respectively.

Theorem 3.9. Let H# = Mo x Mo UG x My x My = M = My U My be a boundary
groupoid with two orbits and exponential isotropy. Suppose further that there exists a
deformation D from the pair groupoid M x M for H. Then one has

indg oe3 My, = EMxM,M,-
Proof. Observe that
Mo x My x [0, 1] = Dpryx[0,1]

is an open subgroupoid. For any u € C*(My x My), let it € C*(My x My x [0, 1]) be
the pullback of u by the projection to the My x M, factor (i.e., u is just u on each My x
My x {s}). Extend i to £ by 0 and one gets £p_ps,x[0,1](#). When restricted to s = 0 and
s = 1, it is clear that e as,x[0,1](#) equals

ege,M,(u) and enrxm,m, (1),

respectively. Passing to K-theory, one obtains

D, Mx{0} © £0,Mox[0,1]1([11]) = €3¢, m, ([u]).
and
D, Mx{1} © £D,Mox[0,11([H]) = eprxm,m, ([u]),

for any class [u] € Ko(Mo X Myp). Hence, we have

ind.p 086, m, ([U]) =FD.Mx{1} © "D prxioy © TD.Mx{0} © ED Mox[0.1]([7])

=emxm,M, ([u]),

which completes the proof. ]

4. Fredholm and K -theoretic index of (fully) elliptic operators on
boundary groupoids

In this section, we combine the map in Theorem 1.2 and the Atiyah—Singer index for-
mula to compute the index. Before doing that, we briefly recall the Atiyah—Singer index
formula; in particular, we shall use the version appearing in [38, Theorem 5.1].
Let § == M be a Lie groupoid and A the associated Lie algebroid of §. Define the
line bundle
L:=ANPT*M ® ANPA.
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We suppose further that ¥ is unimodular, i.e., there exists an invariant nowhere vanish-
ing section €2 of L. Then the characteristic map yq defines a map from the groupoid
cohomology to cyclic cohomology by [38, Equation (5)]

xe(@1 ® - ®¢r)(ao ® -+ ® ag)

:=/ (/ ao(gO)(/)l(gl)al(gl)"'(/)k(gk)ak(gk)>§2(x)
M *Jgogr=1x

(on the level of cochains), for any groupoid cocycle ¢ ® - - - ® @i . Then one combines ygo
with the canonical pairing between cyclic homology and cohomology, the Connes—Chern
character map, which maps from Ko (W, *°(¥)) to the cyclic homology of W_°°(¥), and
the van Est map, to obtain a pairing

(W]la)geC

for any [{] € Ko(W, (), a € H*(A,C).
Then the main result of [38, Theorem 5.1] states that such pairing can be computed by
the following formula.

Lemma 4.1. For any elliptic pseudodifferential operator ¥ and o € H* (A, C), we have
(ind(¥), a)g = @rv/—1)7F / (m*a A A(A)) A ch(a[®]), Qi4),
A/

where A(A') € H*(TM) is the A-hat genus, ch: Ko(C(A')) — H®"¢"(TM) is the Chern
character (which can be defined by, say, the Chern—Weil construction), and 7' A is the
pullback Lie algebroid of A along the projectionw : A’ — M.

Let us consider the particular case when § = M x M is the pair groupoid, hence

A = TM,and L is trivial. One obtains an invariant nowhere vanishing section €2 of L by
considering

Q:=Cdx" Ao ndx™M @ LnA Ly 4.1

locally, for any constant C # 0. Also, the constant function 1 obviously defines a class
[1] € H°(A, C). Applying Lemma 4.1, one gets

(ind(¥), 1)q = / (A(T*M) A ch([®]). Qi7a1)- (4.2)
T*M
Since ind(¥) is an integer, by choosing an appropriate normalization C for €2, we have
ind(¥) = (ind(¥), 1)q,

and the identity (4.2) simplifies to

ind(¥) = /T*MM(T*M)Ach(a[m),sz,,,m). 4.3)
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Remark 4.2. In order to apply Lemma 4.1, one needs a nontrivial §-invariant Lie alge-
broid class. By [24] the construction of such a class is nontrivial, because the Lie algebroid
associated to a boundary groupoid is in general not unimodular. However, in the following
subsections we shall use a deformation from the pair groupoid to simplify the problem to
that of a regular groupoid, which is clearly unimodular, so that Lemma 4.1 can be applied.

In the sequel, we focus on boundary groupoids with two orbits and exponential iso-
tropy, i.e., of the form

H =My x MgUG XMy x My =M = Myu M, “4.4)

where G is an exponential Lie group, and assume that a deformation from the pair group-
oid exists for J.

4.1. The odd codimension case

Recall that if the isotropy subgroup G is exponential and of odd dimension > 3, then

EH.My
Ko(M()XMo)E’Z————)C (%)EZ

is an isomorphism. Identifying Ko(Mo x M) = Ko(M x M) using earxm,m,. One sees
from Theorem 1.3 that indp is the inverse of ez,
Given any elliptic pseudodifferential operator ¥, in order to compute the integer

ind(¥) = indg (g (8]0 (¥)]).
we apply Theorem 1.2 to obtain
ind(¥) = indg (5 (0[o (¥)]) = indgarxar) ([0 (¥))).
where we regard d[o] € Ko(C*(TM)) on the rightmost expression. Observe that
ind7 (arx ) (9[0])

is just the analytic index of the pair groupoid. Hence we apply Lemma 4.1 (with the
normalization of (4.3)) to conclude the following theorem.

Theorem 4.3. Suppose that ¢ = M is a boundary groupoid with two orbits and expo-
nential isotropy with dim G = 3 odd, and a deformation from the pair groupoid exists
for K. Let W be an elliptic pseudodifferential operator on . Then one has the index
formula

ind(¥) = ind oy Do (@) = /T VAT M) Ach(o9). uiry). (49

Remark 4.4. By Proposition 3.3, we see that a deformation from the pair groupoid always
exists for submanifold groupoids. Because renormalizable boundary groupoids form a
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special class of submanifold groupoids, Theorem 4.3 applies and implies that the index is
given only by the Atiyah—Singer term. Comparing with the results of [7, 8] (for higher co-
dimension) and also [40], one sees that the n-term vanishes for elliptic pseudodifferential
operators on §. Therefore we give a completely new proof that generalizes these previous
results.

Example 4.5. Recall [26, Section 6] that for any Lie groupoid the vertical de Rham oper-
ator d is an (invariant) groupoid differential operator. Its vector representation computes
its Lie algebroid cohomology. Fixing a Riemannian metric on A, one can then define the
formal adjoint d* of d, which leads one to construct the Euler operator d + d*, and also
the signature operator. More generally, one can construct generalized Dirac operators.

For illustration here, we only consider the case when the Lie algebroid A is spin,
and J is of the form (4.4) with M of odd codimension, where a deformation from the
pair groupoid exists. Let S4 be the spinor bundle of A. Following [26, Section 6], one
constructs the (groupoid) Dirac operator D 4 associated with the Levi-Civita connection.
On the other hand, Proposition 3.4 implies that M is also a spin manifold, and the spinor
bundle ST/ is isomorphic to S 4. Hence it is standard to construct the Dirac operator D
associated with the Levi-Civita connection. One sees from its explicit construction that
the principal symbol of D4 is equal to that of D (however, D4 and D are very different
as groupoid differential operators). Hence by Theorem 3.8, the index of D 4 is the same
as the index of D. Theorem 4.3 then gives an explicit formula for ind(D 4). Lastly, recall
[6, Section 3] that one can generalize the construction of the Dirac operator by tensoring
S 4 with a vector bundle W, and in this case the Chern form ch(a[D 4]) can be written
explicitly using the twisting curvature.

4.2. The even codimension case
On the other hand, if G is of even dimension, one has the short exact sequence
0 = Ko(Mo x M) = 7, 2220 ko(C*(36)) 222 Ko(C*(Hag,)) = 7 — 0,
and Theorem 1.3 canonically identifies
Ko(C*"(H)=Z D7

viaindgp ®rg um,. For the indp component, the arguments for the odd case apply without
any change, and the result is the same Atiyah—Singer integral (4.5). To compute

r3e,m, © indg () (0[0]),
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we observe that restriction of 7 (#) to My x [0, 1] is just T (H1), which is the adiabatic
groupoid of #; = G x M x My; hence we obtain the commutative diagram

T'T (3€),M x{0} T (3),Mx{1}

C*(4) CH(T(#)) C*(H#)

er,Ml er(f%),Ml x[0,1] lr,#,ml

C*(Alm,) CH(T (H) —— C* (),

T'F (J1),M1x{0} T (J1),Mx{1}

which implies
rye.m, © indg ey (9[o]) = ind7(ge,) (d[0]| a1, )-

The right-hand side of the above can, in turn, be computed by Lemma 4.1 with J; =
M x M x G as the groupoid:

indsen@lolba) = [ (A M1 © ) AHOb) Dyiry )

where Q' € T®(APg @ APT*M; ® APTM;) is a suitably normalized, invariant no-
where vanishing section defined in the same manner as in Equation (4.1), and g is the Lie
algebra of the isotropy group G.

To conclude, we have arrived at an index formula for elliptic pseudodifferential oper-
ators on J.

Theorem 4.6. Suppose that H = M is a boundary groupoid with two orbits and expo-
nential isotropy, i.e., of the form (4.4) with dim G even, and a deformation from the pair
groupoid exists for K. Let ¥ be an elliptic pseudodifferential operator on H. One has the
index formula

ind(¥) = (A(T*M) A ch(o[¥]), Qi)
T*M

® [ (AT My g) Achol¥an). Lyipy)
T*Mxg 1
SYASY/
= Ko(C*(J0)).
4.3. The Fredholm index for fully elliptic operators

Lastly, recall the definition of fully elliptic operators in Definition 2.10. We suppose in this
subsection that ¥ is a fully elliptic operator on # = M, where J is a boundary groupoid
with two orbits and exponential isotropy.

Corollary 4.7. The Fredholm index of ¥ is

indp (¥) = /T*M (A(T*M) A ch(a[¥]), Q7).
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Proof. Recall that ¥ is invertible modulo C*(My x My) = K and its Fredholm index
lies in Ko (C™*(My x My)). By Theorems 1.3, 1.2, and [12], we have

indg (W) = ind@ O J M, (indF (‘I/))
= indgp (indg (3 (0 (¥)))

:/*M (A\(T*M) A ch(a[¥]), Qyr‘TM)' "

Remark 4.8. One can replace the pair groupoid in Definition 3.1 by other groupoids.
Most of the arguments in Section 4 still work in a more general setting. It would be inter-
esting to see which class of groupoids can arise from this kind of (nontrivial) deformation,
and what index formulae one can obtain.

Acknowledgments. We would like to thank Prof. Xiang Tang for explaining his paper
[38] to us. We also thank the anonymous referee for a careful reading of the manuscript
and many suggestions that have improved it substantially.

Funding. Qiao was partially supported by the NSFC (grant nos. 11971282, 12271323).

References

[1] B. Ammann, R. Lauter, and V. Nistor, On the geometry of Riemannian manifolds with a Lie
structure at infinity. Int. J. Math. Math. Sci. (2004), no. 1-4, 161-193 Zbl 1071.53020
MR 2038804

[2] B. Ammann, R. Lauter, and V. Nistor, Pseudodifferential operators on manifolds with a Lie
structure at infinity. Ann. of Math. (2) 165 (2007), no. 3, 717-747 Zbl 1133.58020
MR 2335795

[3] I. Androulidakis and G. Skandalis, The holonomy groupoid of a singular foliation. J. Reine
Angew. Math. 626 (2009), 1-37 Zbl 1161.53020 MR 2492988

[4] 1. Androulidakis and G. Skandalis, The analytic index of elliptic pseudodifferential operators
on a singular foliation. J. K-Theory 8 (2011), no. 3, 363-385 Zbl 1237.57030 MR 2863417

[5] L. Androulidakis and G. Skandalis, Pseudodifferential calculus on a singular foliation. J. Non-
commut. Geom. 5 (2011), no. 1, 125-152 Zbl 1216.53029 MR 2746653

[6] N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators. Grundlehren Text
Ed., Springer, Berlin, 2004, Corrected reprint of the 1992 original. Zbl 1037.58015
MR 2273508

[7] K. Bohlen, Groupoids and singular manifolds. [v1] 2016, [v2] 2017, arXiv:1601.04166v2

[8] K. Bohlen and E. Schrohe, Getzler rescaling via adiabatic deformation and a renormalized
index formula. J. Math. Pures Appl. (9) 120 (2018), 220-252 Zbl 1403.58008 MR 3906160

[9] P. Carrillo Rouse and J.-M. Lescure, Geometric obstructions for Fredholm boundary condi-
tions for manifolds with corners. Ann. K-Theory 3 (2018), no. 3, 523-563 Zbl 1394.19003
MR 3830201

[10] P. Carrillo Rouse, J. M. Lescure, and B. Monthubert, A cohomological formula for the Atiyah—

Patodi—Singer index on manifolds with boundary. J. Topol. Anal. 6 (2014), no. 1, 27-74
Zbl 1346.19007 MR 3190137


https://doi.org/10.1155/S0161171204212108
https://doi.org/10.1155/S0161171204212108
https://zbmath.org/?q=an:1071.53020
https://mathscinet.ams.org/mathscinet-getitem?mr=2038804
https://doi.org/10.4007/annals.2007.165.717
https://doi.org/10.4007/annals.2007.165.717
https://zbmath.org/?q=an:1133.58020
https://mathscinet.ams.org/mathscinet-getitem?mr=2335795
https://doi.org/10.1515/CRELLE.2009.001
https://zbmath.org/?q=an:1161.53020
https://mathscinet.ams.org/mathscinet-getitem?mr=2492988
https://doi.org/10.1017/is011001026jkt141
https://doi.org/10.1017/is011001026jkt141
https://zbmath.org/?q=an:1237.57030
https://mathscinet.ams.org/mathscinet-getitem?mr=2863417
https://doi.org/10.4171/JNCG/72
https://zbmath.org/?q=an:1216.53029
https://mathscinet.ams.org/mathscinet-getitem?mr=2746653
https://doi.org/10.1007/978-3-642-58088-8
https://zbmath.org/?q=an:1037.58015
https://mathscinet.ams.org/mathscinet-getitem?mr=2273508
https://arxiv.org/abs/1601.04166v2
https://doi.org/10.1016/j.matpur.2017.07.016
https://doi.org/10.1016/j.matpur.2017.07.016
https://zbmath.org/?q=an:1403.58008
https://mathscinet.ams.org/mathscinet-getitem?mr=3906160
https://doi.org/10.2140/akt.2018.3.523
https://doi.org/10.2140/akt.2018.3.523
https://zbmath.org/?q=an:1394.19003
https://mathscinet.ams.org/mathscinet-getitem?mr=3830201
https://doi.org/10.1142/S1793525314500046
https://doi.org/10.1142/S1793525314500046
https://zbmath.org/?q=an:1346.19007
https://mathscinet.ams.org/mathscinet-getitem?mr=3190137

(11]
[12]

(13]

(14]

(15]

[16]

(17]
(18]
(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

Deformation and K-theoretic index formulae on boundary groupoids 23

P. Carrillo-Rouse and B. Monthubert, An index theorem for manifolds with boundary. C. R.
Math. Acad. Sci. Paris 347 (2009), no. 23-24, 1393-1398 Zbl 1204.58016 MR 2588788

P. Carrillo Rouse and B. K. So, K-theory and index theory for some boundary groupoids.
Results Math. 75 (2020), no. 4, article no. 172 Zbl 1453.58006 MR 4165728

C. Carvalho, V. Nistor, and Y. Qiao, Fredholm criteria for pseudodifferential operators and
induced representations of groupoid algebras. Electron. Res. Announc. Math. Sci. 24 (2017),
68-77 Zbl 1405.58009 MR 3699060

C. Carvalho, V. Nistor, and Y. Qiao, Fredholm conditions on non-compact manifolds: theory
and examples. In Operator theory, operator algebras, and matrix theory, pp. 79—122, Oper.
Theory Adv. Appl. 267, Birkhduser/Springer, Cham, 2018 Zbl 1446.58011 MR 3837632

R. Céme, The Fredholm property for groupoids is a local property. Results Math. 74 (2019),
no. 4, article no. 160 Zbl 1430.58020 MR 3998755

A. Connes, Sur la théorie non commutative de I'intégration. In Algebres d’opérateurs (Sém.,
Les Plans-sur-Bex, 1978), pp. 19-143, Lecture Notes in Math. 725, Springer, Berlin, 1979
Zbl 0412.46053 MR 0548112

A. Connes, Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994

Zbl 0818.46076 MR 1303779

C. Debord, Holonomy groupoids of singular foliations. J. Differential Geom. 58 (2001), no. 3,
467-500 Zbl 1034.58017 MR 1906783

C. Debord, J.-M. Lescure, and V. Nistor, Groupoids and an index theorem for conical pseudo-
manifolds. J. Reine Angew. Math. 628 (2009), 1-35 Zbl 1169.58005 MR 2503234

C. Debord, J.-M. Lescure, and F. Rochon, Pseudodifferential operators on manifolds with
fibred corners. Ann. Inst. Fourier (Grenoble) 65 (2015), no. 4, 1799—-1880 Zbl 1377.58025
MR 3449197

C. Debord and G. Skandalis, Adiabatic groupoid, crossed product by R*+ and pseudodifteren-
tial calculus. Adv. Math. 257 (2014), 66-91 Zbl 1300.58007 MR 3187645

C. Debord and G. Skandalis, Pseudodifferential extensions and adiabatic deformation of
smooth groupoid actions. Bull. Sci. Math. 139 (2015), no. 7, 750-776 Zbl 1327.58021

MR 3407514

C. Debord and G. Skandalis, Blow-up constructions for Lie groupoids and a Boutet de Monvel
type calculus. Miinster J. Math. 14 (2021), no. 1, 1-40 Zbl 1460.58013 MR 4300161

S. Evens, J.-H. Lu, and A. Weinstein, Transverse measures, the modular class and a cohomol-
ogy pairing for Lie algebroids. Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 200, 417-436
Zbl 0968.58014 MR 1726784

R. Lauter, B. Monthubert, and V. Nistor, Pseudodifferential analysis on continuous family
groupoids. Doc. Math. 5 (2000), 625-655 Zbl 0961.22005 MR 1800315

R. Lauter and V. Nistor, Analysis of geometric operators on open manifolds: a groupoid
approach. In Quantization of singular symplectic quotients, pp. 181-229, Progr. Math. 198,
Birkhiuser, Basel, 2001 Zbl 1018.58009 MR 1938556

P-Y. Le Gall and B. Monthubert, K-theory of the indicial algebra of a manifold with corners.
K-Theory 23 (2001), no. 2, 105-113 Zbl 1022.46045 MR 1857076

K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry. London Math. Soc.
Lecture Note Ser. 124, Cambridge University Press, Cambridge, 1987 Zbl 0683.53029

MR 0896907

K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids. London Math. Soc.
Lecture Note Ser. 213, Cambridge University Press, Cambridge, 2005 Zbl 1078.58011

MR 2157566


https://doi.org/10.1016/j.crma.2009.10.021
https://zbmath.org/?q=an:1204.58016
https://mathscinet.ams.org/mathscinet-getitem?mr=2588788
https://doi.org/10.1007/s00025-020-01300-6
https://zbmath.org/?q=an:1453.58006
https://mathscinet.ams.org/mathscinet-getitem?mr=4165728
https://doi.org/10.3934/era.2017.24.008
https://doi.org/10.3934/era.2017.24.008
https://zbmath.org/?q=an:1405.58009
https://mathscinet.ams.org/mathscinet-getitem?mr=3699060
https://doi.org/10.1007/978-3-319-72449-2_4
https://doi.org/10.1007/978-3-319-72449-2_4
https://zbmath.org/?q=an:1446.58011
https://mathscinet.ams.org/mathscinet-getitem?mr=3837632
https://doi.org/10.1007/s00025-019-1084-x
https://zbmath.org/?q=an:1430.58020
https://mathscinet.ams.org/mathscinet-getitem?mr=3998755
https://doi.org/10.1007/BFb0062614
https://zbmath.org/?q=an:0412.46053
https://mathscinet.ams.org/mathscinet-getitem?mr=0548112
https://zbmath.org/?q=an:0818.46076
https://mathscinet.ams.org/mathscinet-getitem?mr=1303779
https://doi.org/10.4310/jdg/1090348356
https://zbmath.org/?q=an:1034.58017
https://mathscinet.ams.org/mathscinet-getitem?mr=1906783
https://doi.org/10.1515/CRELLE.2009.017
https://doi.org/10.1515/CRELLE.2009.017
https://zbmath.org/?q=an:1169.58005
https://mathscinet.ams.org/mathscinet-getitem?mr=2503234
https://doi.org/10.5802/aif.2974
https://doi.org/10.5802/aif.2974
https://zbmath.org/?q=an:1377.58025
https://mathscinet.ams.org/mathscinet-getitem?mr=3449197
https://doi.org/10.1016/j.aim.2014.02.012
https://doi.org/10.1016/j.aim.2014.02.012
https://zbmath.org/?q=an:1300.58007
https://mathscinet.ams.org/mathscinet-getitem?mr=3187645
https://doi.org/10.1016/j.bulsci.2014.12.001
https://doi.org/10.1016/j.bulsci.2014.12.001
https://zbmath.org/?q=an:1327.58021
https://mathscinet.ams.org/mathscinet-getitem?mr=3407514
https://doi.org/10.17879/59019640550
https://doi.org/10.17879/59019640550
https://zbmath.org/?q=an:1460.58013
https://mathscinet.ams.org/mathscinet-getitem?mr=4300161
https://doi.org/10.1093/qjmath/50.200.417
https://doi.org/10.1093/qjmath/50.200.417
https://zbmath.org/?q=an:0968.58014
https://mathscinet.ams.org/mathscinet-getitem?mr=1726784
https://doi.org/10.4171/DM/90
https://doi.org/10.4171/DM/90
https://zbmath.org/?q=an:0961.22005
https://mathscinet.ams.org/mathscinet-getitem?mr=1800315
https://doi.org/10.1007/978-3-0348-8364-1_8
https://doi.org/10.1007/978-3-0348-8364-1_8
https://zbmath.org/?q=an:1018.58009
https://mathscinet.ams.org/mathscinet-getitem?mr=1938556
https://doi.org/10.1023/A:1017550814634
https://zbmath.org/?q=an:1022.46045
https://mathscinet.ams.org/mathscinet-getitem?mr=1857076
https://doi.org/10.1017/CBO9780511661839
https://zbmath.org/?q=an:0683.53029
https://mathscinet.ams.org/mathscinet-getitem?mr=0896907
https://doi.org/10.1017/CBO9781107325883
https://zbmath.org/?q=an:1078.58011
https://mathscinet.ams.org/mathscinet-getitem?mr=2157566

(30]

(31]
(32]

(33]

(34]
(35]
(36]
(37]

(38]

(39]

[40]
(41]
[42]

[43]

[44]

Y. Qiao and B. K. So 24

B. Monthubert, Pseudodifferential calculus on manifolds with corners and groupoids. Proc.
Amer. Math. Soc. 127 (1999), no. 10, 2871-2881 Zbl 0939.35202 MR 1600121; Erratum
Proc. Amer. Math. Soc. 128 (2000), no. 2 MR 1600121

B. Monthubert and V. Nistor, A topological index theorem for manifolds with corners. Com-
pos. Math. 148 (2012), no. 2, 640-668 Zbl 1247.58016 MR 2904199

B. Monthubert and F. Pierrot, Indice analytique et groupoides de Lie. C. R. Acad. Sci. Paris
Sér. I Math. 325 (1997), no. 2, 193-198 Zbl 0955.22004 MR 1467076

S. Moroianu and V. Nistor, Index and homology of pseudodifferential operators on manifolds
with boundary. In Perspectives in operator algebras and mathematical physics, pp. 123-148,
Theta Ser. Adv. Math. 8, Theta, Bucharest, 2008 Zbl 1212.58017 MR 2433031

V. Nistor, Groupoids and the integration of Lie algebroids. J. Math. Soc. Japan 52 (2000),
no. 4, 847-868 Zbl 0965.58023 MR 1774632

V. Nistor, Analysis on singular spaces: Lie manifolds and operator algebras. J. Geom. Phys.
105 (2016), 75-101 Zbl 1339.58015 MR 3504153

V. Nistor, A. Weinstein, and P. Xu, Pseudodifferential operators on differential groupoids.
Pacific J. Math. 189 (1999), no. 1, 117-152 Zbl 0940.58014 MR 1687747

M. J. Pflaum, H. Posthuma, and X. Tang, The index of geometric operators on Lie groupoids.
Indag. Math. (N.S.) 25 (2014), no. 5, 1135-1153 Zbl 1300.22002 MR 3264790

M. J. Pflaum, H. Posthuma, and X. Tang, The localized longitudinal index theorem for Lie
groupoids and the van Est map. Adv. Math. 270 (2015), 223-262 Zbl 1408.58016

MR 3286536

M. J. Pflaum, H. Posthuma, and X. Tang, The transverse index theorem for proper cocompact
actions of Lie groupoids. J. Differential Geom. 99 (2015), no. 3, 443-472 Zbl 1328.58017
MR 3316973

Y. Qiao and B. K. So, Renormalized index formulas for elliptic differential operators on bound-
ary groupoids. 2021, arXiv:2108.04592v2, to appear in J. Operator Theory

J. Renault, A groupoid approach to C *-algebras. Lecture Notes in Math. 793, Springer, Berlin,
1980 Zbl 0433.46049 MR 0584266

B. K. So, On the full calculus of pseudo-differential operators on boundary groupoids with
polynomial growth. Adv. Math. 237 (2013), 1-32 Zbl 1269.58007 MR 3028572

B. K. So, Pseudo-differential operators, heat calculus and index theory of groupoids satisfy-
ing the Lauter—Nistor condition. Ph.D. thesis, The University of Warwick, 2010, available at
https://wrap.warwick.ac.uk/id/eprint/3793/, visited on 25 July 2024 arXiv:1006.5623

V. F. Zenobi, Adiabatic groupoid and secondary invariants in K-theory. Adv. Math. 347 (2019),
940-1001 Zbl 1419.22003 MR 3922452

Received 11 October 2023; revised 10 December 2023.

Yu Qiao
School of Mathematics and Statistics, Shaanxi Normal University, 620 West Chang’an Ave,
Chang’an District, 710119 Xi’an, Shaanxi, P. R. China; ygiao@snnu.edu.cn

Bing Kwan So
School of Mathematics, Jilin University, 2699 Qianjin Ave, 130012 Changchun, Jilin, P.R. China;
bkso @ graduate.hku.hk


https://doi.org/10.1090/S0002-9939-99-04850-9
https://zbmath.org/?q=an:0939.35202
https://mathscinet.ams.org/mathscinet-getitem?mr=1600121
https://doi.org/10.1090/S0002-9939-99-05684-1
https://mathscinet.ams.org/mathscinet-getitem?mr=1600121
https://doi.org/10.1112/S0010437X11005458
https://zbmath.org/?q=an:1247.58016
https://mathscinet.ams.org/mathscinet-getitem?mr=2904199
https://doi.org/10.1016/S0764-4442(97)84598-3
https://zbmath.org/?q=an:0955.22004
https://mathscinet.ams.org/mathscinet-getitem?mr=1467076
https://zbmath.org/?q=an:1212.58017
https://mathscinet.ams.org/mathscinet-getitem?mr=2433031
https://doi.org/10.2969/jmsj/05240847
https://zbmath.org/?q=an:0965.58023
https://mathscinet.ams.org/mathscinet-getitem?mr=1774632
https://doi.org/10.1016/j.geomphys.2016.03.014
https://zbmath.org/?q=an:1339.58015
https://mathscinet.ams.org/mathscinet-getitem?mr=3504153
https://doi.org/10.2140/pjm.1999.189.117
https://zbmath.org/?q=an:0940.58014
https://mathscinet.ams.org/mathscinet-getitem?mr=1687747
https://doi.org/10.1016/j.indag.2014.07.014
https://zbmath.org/?q=an:1300.22002
https://mathscinet.ams.org/mathscinet-getitem?mr=3264790
https://doi.org/10.1016/j.aim.2014.11.007
https://doi.org/10.1016/j.aim.2014.11.007
https://zbmath.org/?q=an:1408.58016
https://mathscinet.ams.org/mathscinet-getitem?mr=3286536
https://doi.org/10.4310/jdg/1424880982
https://doi.org/10.4310/jdg/1424880982
https://zbmath.org/?q=an:1328.58017
https://mathscinet.ams.org/mathscinet-getitem?mr=3316973
https://arxiv.org/abs/2108.04592v2
https://doi.org/10.1007/BFb0091072
https://zbmath.org/?q=an:0433.46049
https://mathscinet.ams.org/mathscinet-getitem?mr=0584266
https://doi.org/10.1016/j.aim.2013.01.001
https://doi.org/10.1016/j.aim.2013.01.001
https://zbmath.org/?q=an:1269.58007
https://mathscinet.ams.org/mathscinet-getitem?mr=3028572
https://wrap.warwick.ac.uk/id/eprint/3793/
https://arxiv.org/abs/1006.5623
https://doi.org/10.1016/j.aim.2019.03.003
https://zbmath.org/?q=an:1419.22003
https://mathscinet.ams.org/mathscinet-getitem?mr=3922452
mailto:yqiao@snnu.edu.cn
mailto:bkso@graduate.hku.hk

	1. Introduction
	1.1. Structure of the paper

	2. Preliminaries
	2.1. Lie groupoids, Lie algebroids, pseudodifferential operators on Lie groupoids, and groupoid C*-algebras
	2.2. Invariant submanifolds and composition series
	2.3. Boundary groupoids and submanifold groupoids
	2.4. The tangent groupoid and the adiabatic groupoid 

	3. The deformation groupoid and the deformation index map
	3.1. Construction of deformations from the pair groupoid
	3.2. Obstructions to the existence of deformations from the pair groupoid
	3.3. The deformation index map

	4. Fredholm and K-theoretic index of (fully) elliptic operators on boundary groupoids
	4.1. The odd codimension case
	4.2. The even codimension case
	4.3. The Fredholm index for fully elliptic operators

	References

