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Well-posedness and stability for the two-phase periodic
quasistationary Stokes flow

Daniel Böhme and Bogdan-Vasile Matioc

Abstract. The two-phase horizontally periodic quasistationary Stokes flow in R2, describing the
motion of two immiscible fluids with equal viscosities that are separated by a sharp interface,
parameterized as the graph of a function f D f .t/, is considered in the general case when both
gravity and surface tension effects are included. Using potential theory, the moving boundary prob-
lem is formulated as a fully nonlinear and nonlocal parabolic problem for the function f . Based on
abstract parabolic theory, it is shown that the problem is well-posed in all subcritical spaces Hr .S/,
with r 2 .3=2; 2/. Moreover, the stability properties of the flat equilibria are analyzed in dependence
on the physical properties of the fluids.

1. Introduction

We consider the two-phase horizontally periodic quasistationary Stokes flow driven by
surface tension and gravity effects, which is modeled by the system

��v˙ � rq˙ D 0 in �˙.t/,

div v˙ D 0 in �˙.t/,

Œv� D 0 on �.t/,

ŒT�.v; q/�z� D .‚x2 � �z�/z� on �.t/,

.v˙; q˙/.x/! .˙c1;� ; 0;˙c2;�/ for x2 !˙1,

Vn D v � z� on �.t/

9>>>>>>>>>>=>>>>>>>>>>;
(1.1a)

for t > 0. We assume that �.t/ is the graph of a function f .t/ that separates the two fluid
domains

�˙.t/ WD
®
x D .x1; x2/ 2 S �R W x2 ? f .t; x1/

¯
; t > 0:

We denote by S WDR=2�Z the unit circle, functions that depend on the real variable � 2 S
being 2�-periodic with respect to it. In particular, the unknown .f; v˙; q˙/ is assumed to
be 2�-periodic with respect to the horizontal variable x1. At time t D 0, we impose the
initial condition

f .0/ D f0: (1.1b)
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Moreover, the constants c1;� and c2;� evolve over time and are identified by f D f .t/
and the other constants in (1.1a) according to

c1;� WD �
�

2�

�
f 0

.1C f 02/1=2

�
; c2;� WD �

‚

2
hf i; t > 0; (1.1c)

where

hhi WD
1

2�

Z �

��

h.s/ ds

denotes the integral mean of an integrable function h W S! R and

‚ WD g.�� � �C/ 2 R: (1.2)

The equation set (1.1) describes the dynamics of two incompressible and immiscible New-
tonian fluids with equal viscosities, the positive constants � and � representing the surface
tension coefficient at the interface and the viscosity of the fluids, respectively. The con-
stant g � 0 is the Earth’s gravity and �˙ stands for the density of the fluid occupying
�˙. Moreover, z� is the unit exterior normal to @�� and z� is the curvature of the moving
interface. We further denote by v˙ D v˙.t/ W �˙.t/! R2 the velocity field in the fluid
domain �˙.t/ and q˙ D q˙.t/ W �˙.t/! R is defined by

q˙.t; x/ D p˙.t; x/C g�˙x2; x D .x1; x2/ 2 �
˙.t/;

where p˙ D p˙.t/ is the pressure in �˙.t/. The stress tensor T�.v˙; q˙/ is given by

T�.v
˙; q˙/ WD �q˙I2C�

�
rv˙C .rv˙/>

�
; .rv˙/ij WD @j v

˙
i ; i; j D 1;2; (1.3)

while Œv� and ŒT�.v; q/� denote the jump of the velocity and the stress tensor across the
moving interface, respectively, as defined in (2.3) below. Finally, Vn is the normal velocity
of the interface �.t/, x � y denotes the Euclidean scalar product of two vectors x; y 2 Rn,
and In 2 Rn�n is the identity matrix.

First studies of the quasistationary Stokes flow investigated the setting of a single
fluid phase which occupies a sufficiently smooth domain �.t/ � Rd , d � 2. In [20], the
authors have established the well-posedness of the problem for initial data which are close
to a smooth and strictly star-shaped domain, together with the exponential stability of
balls. Subsequently, the exponential stability of balls has been proven in [11, 12] in space
dimension d 2 ¹2; 3º by a different power series argument. Moreover, in the two-phase
setting in R2, where one bounded fluid phase is surrounded by the other and the system
is driven by the surface tension at the interface, it was recently shown in [7] that balls are
exponentially stable. Furthermore, in the confined setting, the quasistationary Stokes flow
is the singular limit of the Navier–Stokes problem when the Reynolds number vanishes,
cf. [35, 36].

The two-phase quasistationary Stokes flow in a bounded geometry, with one of the
fluid phases surrounding the other one and with possible phase transitions, has been con-
sidered in arbitrary space dimension d � 2 in the monograph [33] on the basis of maximal
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regularity in weighted Lp-spaces. We also refer to [8] for a study concerning a feedback
stabilization issue in this setting.

In the absence of gravity effects, the nonperiodic version of the quasistationary Stokes
flow (1.1)—with equal and general viscosities—has been investigated recently in [27,28],
the local well-posedness property being provided in Hr .R/, with r 2 .3=2; 2/ arbitrarily
close to the critical exponent r D 3=2, cf. [28, Remark 1.2]. Moreover, as shown in [29],
the unconfined one-phase flow is the singular limit of the two-phase problem when the
viscosity of one of the fluids vanishes.

In the absence of surface tension effects, that is when � D 0, the problem (1.1) has been
analyzed in [14, 15]. If the interface between the fluids is parameterized as an arbitrary
curve, the problem can be reformulated as an ODE and local well-posedness is established
by using Picard’s theorem [15]. In [14], the authors showed that the problem is actually
globally well-posed. Global existence results of solutions in the graph case are provided
in [15] for initial data that are small in H3.S/ or in certain Wiener algebras in the stable
regime when‚> 0. In fact, the solutions to (1.1) in the case � D 0 also solve the transport
Stokes system, see [19,21,22,30,31], which is a model for the settling process of a cluster
of rigid particles in a viscous fluid.

Lastly, we mention the related Peskin problem which models the evolution of an elastic
string (or membrane) immersed in a viscous fluid. In this context, the equations governing
the motion in the fluid match those in equation (1.1) (with g D 0), while the dynamics of
the elastic string are described using Lagrangian coordinates, see the very recent research
in [5, 6, 13, 16–18, 23, 32].

In this paper, we consider the horizontally periodic quasistationary Stokes flow (1.1)
with both gravity (neglected if g D 0) and surface tension effects incorporated—which
could not be achieved in the nonperiodic case [27,28] and was neither investigated in [14,
15]—in Sobolev spaces Hr .S/ with r 2 .3=2; 2/ arbitrary (again r D 3=2 is the critical
exponent). A striking difference to the nonperiodic case [27, 28] is the far field boundary
condition (1.1a)5 for .v; q/. While in the nonperiodic case .v; q/ vanishes at infinity, under
the periodicity assumption .v; q/ converges, at each fixed time t , towards a constant vector
explicitly determined by f .t/, cf. (1.1c). In particular, for x2 ! ˙1, the velocity is
asymptotically horizontal, but the asymptotic profiles at ˙1 are opposite to each other.
Moreover, for x2!˙1, the pressure may deviate from the hydrostatic pressure by some
constant which is determined by f .t/ and which has opposite sign at˙1.

Our strategy to solve (1.1) is to prove that .v˙; q˙/ is determined at each time instant
t > 0 by f .t/, provided f .t/ 2 H3.S/, see Remark 2.1 and Theorem 2.2. In this way,
we may reformulate (1.1) as a fully nonlinear and nonlocal problem for f , see (3.10),
with nonlinearities expressed by (singular) integral operators involving f , which are well-
defined when merely f 2 Hr .S/ with r > 3=2. The fully nonlinear character of (3.10) is
due to the fact that the phase space Hr .S/ can be chosen arbitrarily close to the critical
space, meaning that the curvature has to be interpreted as a distribution. The situation
is different in [11, 12, 20, 33, 35, 36] where the interface is at least of class C2 and due
to quasilinearity of the curvature operator, the Stokes problem (1.1) may be formulated
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as a quasilinear evolution problem. Using results on certain families of singular inte-
gral operators from Appendices A and B—which might be of interest also in the con-
text of other evolution problems (such as the Hele–Shaw, Muskat, or Mullins–Sekerka
problems)—we then prove that the new formulation (3.10) is of parabolic type and pro-
vide its well-posedness by using abstract parabolic theory from [24], cf. Theorem 1.1
below. Additionally, we show a parabolic smoothing property for (3.10), which justifies
the assumption f .t/ 2 H3.S/ in Theorem 2.2.

Our first main result is the following theorem.

Theorem 1.1. Let ‚ 2 R, �; � 2 .0;1/, r 2 .3=2; 2/, and f0 2 Hr .S/.

(i) (Well-posedness) There exists a unique maximal solution .f; v˙; q˙/ to (1.1)
such that

f WD f .�; f0/ 2 C.Œ0; TC/;Hr .S// \ C1.Œ0; TC/;Hr�1.S//

and

f .t/ 2 H3.S/;

v˙.t/ 2 C2.�˙.t/;R2/ \ C1.�˙.t/;R2/;

q˙.t/ 2 C1.�˙.t// \ C.�˙.t//

9>>=>>; for all t 2 .0; TC/,

where TC D TC.f0/ 2 .0;1�.

(ii) (Parabolic smoothing) We have Œ.t; �/ 7! f .t; �/� 2 C1..0; TC/ � S;R/.

(iii) (Global existence) The solution is global, that is TC.f0/D1, if for each T > 0,
we have

sup
Œ0;T �\Œ0;TC.f0//

kf .t/kHr <1:

Our second main objective is to study the stability properties of the solutions with a
flat interface, which are all equilibria to (1.1). Indeed, if .f; v˙; q˙/ is a solution to (1.1),
then, for each constant c 2 R, the tuple .f C c; Qv˙; Qq˙/ defined by

Qv˙.t; x/D v˙.t; x � .0; c//; Qq˙.t; x/D q˙.t; x � .0; c//�
c‚

2
; x2 ¤ f .t; x1/C c;

is again a solution to (1.1) (with initial data f0C c and the same maximal existence time).
Moreover, the integral mean hf i is preserved by the flow since, by (1.1a)2 and (1.1a)5�6,

dhf i
dt

.t/ D

Z
�.t/

v.t/ � z�.t/ d� D
Z
�˙.t/

div v˙.t/ dx D 0; t 2 Œ0; TC/: (1.4)

Since it is straightforward to verify that .f; v; q/ D 0 is a stationary solution to (1.1), it
follows that .c;0;�c‚=2/ is a stationary solution to (1.1) for each c 2R. This observation
together with our second main result in Theorem 1.2 shows, on the one hand, that if

� C‚ > 0; (1.5)

solutions corresponding to initial data f0 2 Hr .S/ which are close to a constant exist
globally and f .t/ converges exponentially fast towards the integral mean of f0. On the
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other hand, if (1.5) holds with reverse inequality, that is � C ‚ < 0, then the constant
solutions are (nonlinearly) unstable.

Theorem 1.2 (Exponential stability/instability).

(i) Assume (1.5) and let #0 denote the positive constant

#0 WD
� C‚

4�
1Œ0;1/.� �‚/C

p
�‚

2�
1.0;1/.‚ � �/: (1.6)

Then, given # 2 Œ0; #0/, there exist constants ı>0 and M>0 such that for any
f02Hr .S/ satisfying

kf0kHr < ı and hf0i D 0;

we have TC.f0/ D1 and

kf .t/kHr C




 df
dt
.t/





Hr�1
�Me�#tkf0kHr for all t � 0.

(ii) If � C‚ < 0, then the zero solution is unstable.

Outline. In Section 2 and Appendix C, we solve the fixed time problem (1.1a)1–(1.1a)5
with a general right-hand side in (1.1a)4. Then, in Section 3.1, we introduce two classes
of (singular) integral operators, studied in Appendices A and B, which enable us to refor-
mulate in Section 3.2 the flow (1.1) as a nonlinear and nonlocal evolution problem for f .
In Sections 3.3 and 3.4, it is shown that the problem is of parabolic type, the main results
being established in Section 3.5.

2. The fixed time problem

In this section, we address the solvability of the boundary value problem (1.1a)1–(1.1a)5
at a fixed time instant t > 0, under the assumption that f D f .t/ is sufficiently regular and
with a general right-hand side in (1.1a)4. More precisely, we fix f 2 H3.S/ and consider
the boundary value problem

��v˙ � rq˙ D 0 in �˙,

div v˙ D 0 in �˙,

Œv� D 0 on � ,

ŒT�.v; q/�z� D .!
�1G/ ı„�1 on � ,

.v˙; q˙/.x/! .˙c1; 0;˙c2/ for x2 !˙1,

9>>>>>>>=>>>>>>>;
(2.1)

where G WD .G1; G2/ 2 H1.S/2 satisfies hG1i D 0 and the constants c1; c2 2 R are arbi-
trary. The domains �˙ and their common boundary � are defined by

�˙ WD
®
x D .x1; x2/ 2 S �R W x2 ? f .x1/

¯
; � WD

®
.�; f .�// 2 S �R W � 2 S

¯
:
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Note that„ WD„f WD .idS; f / is a diffeomorphism that maps the x1-axis onto � . Further,
� and � are the componentwise pull-back under „ of the unit normal z� on � exterior to
�� and of the tangent z� , that is,

� WD �.f / WD!�1.�f 0;1/>; � WD �.f / WD!�1.1;f 0/>; ! WD!.f / WD .1C f 02/1=2:

(2.2)
For any functions z˙ defined on�˙, respectively, and having limits at some .�;f .�//2� ,
we will write

Œz�.�; f .�// WD lim
�C3x!.�;f .�//

zC.x/ � lim
��3x!.�;f .�//

z�.x/: (2.3)

Remark 2.1. We note that, in the particular case, when

G WD G.f / WD ‚.�ff 0; f / � �.!�1 � 1; !�1f 0/0; (2.4)

we have G 2 H1.S/2 and

.!�1G/ ı„�1 D
�
‚x2 � �z�

�
z�:

Consequently, the right-hand sides of (2.1)4 and of (1.1a)4 coincide in this case.

Before stating our result on the solvability of (2.1), we introduce some further notation.
To start, we define for 0 ¤ x D .x1; x2/ 2 S �R

G�.x/ WD �
1

4�
ln
�

t2
Œx1�
C T 2

Œx2�

.1C t2
Œx1�
/.1 � T 2

Œx2�
/

�
D �

1

4�
ln
�

sin2
�x1
2

�
C sinh2

�x2
2

��
;

(2.5)
which is the fundamental solution to the x1-periodic Laplace equation, that is, G� solves
the equation ��G� D ı0 in D 0.S �R/. We use the shorthand notation

tŒx1� WD tan
�x1
2

�
; x1 2 R n .� C 2�Z/; TŒx2� WD tanh

�x2
2

�
; x2 2 R: (2.6)

The x1-periodic Stokeslet .U;P /, with U WD .U1;U2/ and P WD .P 1;P 2/, is defined
by

U1.x/ D �
1

2�

�
G�.x/C x2@2G�.x/;�x2@1G�.x/

�
; P 1.x/ D @1G�.x/;

U2.x/ D �
1

2�

�
� x2@1G�.x/; G�.x/ � x2@2G�.x/

�
; P 2.x/ D @2G�.x/

(2.7)

for x D .x1; x2/ 2 .S �R/ n ¹0º, and we may reexpress (2.7) as follows:

U.x/ D
1

8�

0BB@ln

 
t2
Œx1�
C T 2

Œx2�

.1C t2
Œx1�
/.1 � T 2

Œx2�
/

!
I2 � x2

0BB@�
.1Ct2

Œx1�
/TŒx2�

t2
Œx1�
CT 2

Œx2�

tŒx1�.1�T
2
Œx2�

/

t2
Œx1�
CT 2

Œx2�

tŒx1�.1�T
2
Œx2�

/

t2
Œx1�
CT 2

Œx2�

.1Ct2
Œx1�

/TŒx2�

t2
Œx1�
CT 2

Œx2�

1CCA
1CCA ;

P 1.x/ D �
1

4�

tŒx1�.1 � T
2
Œx2�
/

t2
Œx1�
C T 2

Œx2�

; P 2.x/ D �
1

4�

.1C t2
Œx1�
/TŒx2�

t2
Œx1�
C T 2

Œx2�

:

(2.8)
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Using (2.7), it is straightforward to prove that .Uk ;P k/, k D 1; 2, are fundamental solu-
tions to the Stokes equations in the sense that

�Uk
� rP k

D ı0ek ;

div Uk
D 0

9=; in D 0.S �R/; (2.9)

where e1 WD .1; 0/ and e2 WD .0; 1/. In particular, they solve the Stokes equations (2.9)
pointwise in .S � R/ n ¹0º. For the derivation of the x1-periodic Stokeslet .U;P /, we
refer to the recent paper [15] (see also [3] for an alternative derivation).

In Theorem 2.2 below and further on we sum over indices appearing twice in a product.

Theorem 2.2. Given f 2 H3.S/ and G 2 H1.S/2 with hG1i D 0, the boundary value
problem (2.1) has a solution .v˙; q˙/ such that

v˙ 2 C2.�˙;R2/ \ C1.�˙;R2/ and q˙ 2 C1.�˙/ \ C.�˙/ (2.10)

if and only if the constants c1; c2 in (2.1)5 are given by

c1 D �
hf G1i

2�
and c2 D �

hG2i

2
: (2.11)

If c1; c2 are defined by (2.11), then the solution .v˙; q˙/ is unique and is given by the
formula

v˙ WD v˙G C
�
0;
hG2i ln 4
4�

�
and q˙ WD q˙G ; (2.12)

where, given x 2 �˙,

v˙G .x/ WD
1

�

Z �

��

Uk.x � .s; f .s///Gk.s/ ds;

q˙G .x/ WD

Z �

��

P k.x � .s; f .s///Gk.s/ ds:

(2.13)

Proof. We devise the proof into several parts.

Uniqueness. For the uniqueness statement, we need to show that if .v˙; q˙/ satisfies
(2.10) and solves the boundary value problem

��v˙ � rq˙ D 0 in �˙,

div v˙ D 0 in �˙,

Œv� D 0 on � ,

ŒT�.v; q/�z� D 0 on � ,

.v˙; q˙/.x/! .˙c1; 0;˙c2/ for x2 !˙1

9>>>>>>>>>=>>>>>>>>>;
(2.14)
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for some .c1; c2/ 2 R2, then actually .v˙; q˙/ D .0; 0/ in �˙ and c1 D c2 D 0. We first
note, in view of (2.14)2, that

T�.v˙; q˙/z� D �q˙z� C �

 
@z�v˙1 C @z�v

˙
2

@z�v˙2 � @z�v
˙
1

!
;

and, since Œ@z�v�D 0 as a consequence of (2.10) and (2.14)3, we arrive together with (2.14)4
at

�Œ@z�v� � Œq�z� D ŒT�.v; q/�z� D 0: (2.15)

Set .v; q/ WD 1�C.vC; qC/C 1��.v�; q�/ 2 L1.S � R;R2 � R/. We then compute, in
light of (2.10), (2.14)1–(2.14)3, and (2.15), that

��v � rq D 0;

div v D 0

µ
in D 0.S �R/:

In particular, taking the divergence of the first equation yields �q D 0, hence, q is a
harmonic function in S � R. Since q is bounded, Liouville’s theorem and (2.14)5 now
yield q D 0 in R2. This in turn means that v1 and v2 are harmonic in S �R, and, since v
is bounded, we conclude together with (2.14)5 that v D 0 and c1 D c2 D 0, which proves
the uniqueness claim.

Solution of the Stokes equations. To prove that .v˙; q˙/ actually solves the homogeneous
Stokes equation, we fix x0 2 �˙ and choose " > 0 such that the closed ball xB".x0/ is
contained in�˙. Since .U;P /.� � .s; f .s/// 2 C1.�˙;R2�2 �R2/, cf. (2.5) and (2.7),
for each fixed s 2 S, the partial derivatives @˛xUk

j .� � .s; f .s///, @
˛
xP k.� � .s; f .s///,

˛ 2 N2, are bounded in xB".x0/ uniformly in s 2 S. Therefore, the function .v˙; q˙/ is
well-defined in (2.12)–(2.13) and we may interchange differentiation with respect to x and
the integral sign in these formulas. Recalling that .Uk ;P k/, k D 1; 2, solve the Stokes
equations (2.9) pointwise in .S � R/ n ¹0º, it follows immediately that .v˙; q˙/ solve
(2.1)1-(2.1)2 in �˙.

Boundary conditions. The boundary conditions (2.1)3–(2.1)4 together with the far-field
boundary condition (2.1)5 for .v˙; q˙/ follow by combining the results of Lemmas C.4
and C.6 below.

3. The evolution problem

In this section, we combine the results from Section 2, Appendices A and B to reformulate
the moving boundary problem (1.1) as a fully nonlinear and nonlocal evolution problem
for the function f , see (3.10) below, with nonlinearities defined in terms of (singular)
integral operators. Then, exploiting estimates from Appendix A and the localization result
in Lemma B.2, we prove that the evolution problem (3.10) is of parabolic type. This prop-
erty together with the abstract parabolic theory from [24] is then used to establish our
main results in Theorems 1.1 and 1.2.
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3.1. Two classes of (singular) integral operators

In this section, we introduce two classes of (singular) integral operators Bp;qn;m and Cn;m,
the operators Bp;qn;m (together with the integral operator B0) constituting via (3.9) the main
building blocks of the evolution operator in (3.10), while the operators Cn;m (which in a
suitable sense retain the singular part of the operators Bp;qn;m with p D 0) are important in
the analysis of (3.10).

To start, we define for integersm;n;p;q 2N0 satisfying p � nC qC 1, and Lipschitz
continuous mappings

a D .a1; : : : ; am/ W R! Rm; b D .b1; : : : ; bn/ W R! Rn;

c D .c1; : : : ; cq/ W R! Rq

the integral operators

Bp;qn;m.ajb/Œc; '�.�/ WD
1

2�
PV

Z �

��

Qn
iD1

TŒ�;s�bi
tŒs�

Qq
iD1

ıŒ�;s�ci=2

tŒs�Qm
iD1

�
1C

�TŒ�;s�ai
tŒs�

�2� '.� � s/

tŒs�
t
p

Œs�
ds (3.1)

and

Cn;m.a/Œb; '�.�/ WD
1

�
PV

Z �

��

Qn
iD1

ıŒ�;s�bi
sQm

iD1

�
1C

� ıŒ�;s�ai
s

�2� '.� � s/s
ds; (3.2)

where ' 2 L2.S/ and � 2 R. We use the notation introduced in (2.6) together with the
shorthand

ıŒ�;s�f WD f .�/ � f .� � s/; TŒ�;s�f WD tanh
�ıŒ�;s�f

2

�
; �; s 2 R: (3.3)

As shown in Lemma A.2 below, the PV symbol is not needed in (3.1) if p � 1.
Moreover, we point out that if the functions a; b, and c are 2�-periodic, then so are

also the mappings Bp;qn;m.ajb/Œc; '� and Cn;m.a/Œb; '�. In particular,

B
0;0
0;0 Œ'�.�/ D

1

2�
PV

Z �

��

'.� � s/

tŒs�
ds D HŒ'�.�/; � 2 R; (3.4)

where H is the periodic Hilbert transform, see, e.g., [4, 37]. Mapping properties for the
operators Bp;qn;m and Cn;m are established in Appendix A.

If all coordinate functions of a, b, and c are identical to a given function f 2W1;1.S/,
we set

Bp;qn;m.f / WD B
p;q
n;m.f; : : : ; f jf; : : : ; f /Œf; : : : ; f; ��; 0 � p � nC q C 1; (3.5)

respectively,
C 0n;m.f / WD Cn;m.f; : : : ; f /Œf; : : : ; f; � �: (3.6)

The operators Bp;qn;m.f / appear in the reformulation (3.10) of the Stokes problem and the
operators C 0n;m.f / are used in its analysis.
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Finally, we introduce a further integral operator B0 by setting

B0.f /Œ'�.�/ WD
1

2�

Z �

��

ln
�

t2
Œs�
C .TŒ�;s�f /

2

.1C t2
Œs�
/.1 � .TŒ�;s�f /2/

�
'.� � s/ ds; � 2 S; (3.7)

where again f 2W1;1.S/ and ' 2 L2.S/.
As shown in Corollary A.8, given r 2 .3=2; 2/, the mappings�
f 7! B0;qn;m.f /

�
W Hr .S/! L.Hr�1.S//;�

f 7!B0.f /
�
;
�
f 7!Bp;qn;m.f /

�
W Hr .S/!L.Hr�1.S/;Hr .S//; 1 � p � nC q C 1;

(3.8)
are smooth. These properties are essential in the study of (3.10).

Finally, we introduce the operators

B1.f / WD B
0;0
0;1 .f / � B

2;0
2;1 .f /;

B2.f / WD B
0;0
1;1 .f /C B

2;0
1;1 .f /;

B3.f / WD B
0;1
0;2 .f /C B

2;1
0;2 .f / � B

0;1
2;2.f / � 2B

2;1
2;2 .f /

� B
4;1
2;2 .f /C B

2;1
4;2 .f /C B

4;1
4;2 .f /;

B4.f / WD B
0;1
1;2 .f /C B

2;1
1;2 .f / � B

2;1
3;2 .f / � B

4;1
3;2 .f /;

B5.f / WD 2
�
B
1;1
0;1 .f / � B

3;1
2;1.f /

�
;

B6.f / WD 2
�
B
1;1
1;1 .f /C B

3;1
1;1 .f /

�
;

(3.9)

which appear in a natural way in the analysis, see (C.19) and (C.21).

3.2. The reformulation of the Stokes problem (1.1)

Let .f; v˙; q˙/ be a solution to (1.1) enjoying the regularity properties in Theorem 1.1 (i).
Since f .t/ 2 H3.S/, and consequently G.f .t// 2 H1.S/2, see (2.4), for all t > 0, we
infer from Remark 2.1 and Theorem 2.2 that the function .v˙.t/; q˙.t// is identified
by the system (1.1a)1–(1.1a)5 and (1.1c) according to (2.12)–(2.13). Together with the
kinematic boundary condition (1.1a)6 and the formulas (C.19), and (C.21) for the trace of
the velocities vG , we deduce that f solves the evolution problem

df
dt
.t/ D ‰.f .t//; t > 0; f .0/ D f0; (3.10)

where the operator ‰ is defined by

‰.f / WD
�

4�
f 0‰1.f /C

‚

4�
f 0‰3.f / �

�

4�
‰2.f /C

‚

4�
‰4.f /C

‚ ln.4/
4�

hf i;

(3.11)
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with

‰1.f / WD .B1 � 2B4/.f /Œ�1.f / � f
0�2.f /�

C .2B2 C B3/.f /Œf
0�1.f /�C B3.f /Œ�2.f /�;

‰2.f / WD B1.f /Œ�2.f / � f
0�1.f /�

C B3.f /Œ�1.f / � f
0�2.f /�C 2B4.f /Œf

0�1.f /C �2.f /�;

‰3.f / WD .B0.f /C B6.f //Œff
0�C B5.f /Œf �;

‰4.f / WD .B0.f / � B6.f //Œf �C B5.f /Œff
0�;

(3.12)

where � D �.f / is given by

�.f / WD .�1.f /; �2.f // WD .!.f /
�1
� 1; f 0!.f /�1/: (3.13)

The function � D �.f / appears in the definition of G D G.f / in (2.4).
Let r 2 .3=2; 2/ be fixed in the following. As an important observation, we note that

the right-hand side of (3.10) is well-defined for all functions f which belong to Hr .S/. In
order to study (3.10), we first establish the following result.

Lemma 3.1. Given r 2 .3=2; 2/, we have � 2 C1.Hr .S/;Hr�1.S/2/ and the Fréchet
derivative @�.f0/ D .@�1.f0/; @�2.f0//, f0 2 Hr .S/, satisfies

@�i .f0/ D ai .f0/
d

d�
2 L.Hr .S/;Hr�1.S//; i D 1; 2; (3.14)

where ai .f0/ 2 Hr�1.S/ are given by

a1.f0/ WD �
f 00

.1C f 020 /
3=2

and a2.f0/ WD
1

.1C f 020 /
3=2
: (3.15)

Proof. The proof is similar to that of [27, Lemma 3.5].

Combining (3.9), (3.11), (3.12), Lemma 3.1 and Corollary A.8, we conclude that

‰ 2 C1.Hr .S/;Hr�1.S//: (3.16)

3.3. The Fréchet derivative

In order to apply the abstract parabolic theory from [24, Chapter 8] in the context of (3.10),
which we now view as an evolution equation in the ambient space Hr�1.S/, it remains to
show that the Fréchet derivative @‰.f0/ 2 L.Hr .S/;Hr�1.S// generates a strongly con-
tinuous analytic semigroup in L.Hr�1.S//. This is the content of the next result (where
we use notation from [2]).

Proposition 3.2. Given f0 2 Hr .S/, we have

�@‰.f0/ 2 H .Hr .S/;Hr�1.S//: (3.17)
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For the remainder of this section and in Section 3.4, we fix f0 2 Hr .S/, r 2 .3=2; 2/.
The proof of Proposition 3.2 requires some preparation. To start, we infer from (3.11) that

@‰.f0/Œf � D
1

4�
.�‰1.f0/C‚‰3.f0//f

0
C

�

4�
.f 00@‰1.f0/ � @‰2.f0//Œf �

C
‚

4�
.@‰4.f0/C f

0
0@‰3.f0//Œf �C

‚ ln.4/
4�

hf i; f 2 Hr .S/:
(3.18)

The terms on the second line of (3.18) are lower order perturbations. To quantify this,
let r 0 2 .3=2; r/ be fixed in the following. Recalling (3.9) and (3.12), Corollary A.8 (with
r replaced by r 0) yields

@Bi .f0/ 2 L.Hr
0

.S/;L.Hr
0�1.S/;Hr

0

.S///; i 2 ¹0; 5; 6º;

and therefore,

k@‰i .f0/Œf �kHr�1 � Ckf kHr 0 ; f 2 Hr .S/; i 2 ¹3; 4º: (3.19)

Moreover, we clearly have

khf ikHr�1 � Ckf k1 � Ckf kHr 0 ; f 2 Hr .S/: (3.20)

The first two terms on the right-hand side of (3.18) are easy to handle as they are first
order differential operators, however, the next two terms are more intricate. To analyze
them we first compute, for some fixed '0 2 Hr�1.S/, by combining (3.9), (A.2), (A.10),
(A.32), Lemma A.2, and Corollary A.8 that

@B1.f0/Œf �Œ'0� D �2'0C
0
1;2.f0/Œf

0�CR1Œf �;

@B2.f0/Œf �Œ'0� D '0
�
C 00;1 � 2C

0
2;2

�
.f0/Œf

0�CR2Œf �;

@B3.f0/Œf �Œ'0� D '0
�
C 00;2 � 3C

0
2;2 � 4C

0
2;3 C 4C

0
4;3

�
.f0/Œf

0�CR3Œf �;

@B4.f0/Œf �Œ'0� D '0
�
2C 01;2 � 4C

0
3;3

�
.f0/Œf

0�CR4Œf �

(3.21)

for all f 2 Hr .S/, where

kRi Œf �kHr�1 � Ckf kHr 0 ; f 2 Hr .S/; 1 � i � 4: (3.22)

Moreover, (3.9), (A.2), Lemma A.2, and Corollary A.8 entail that

B1.f0/Œ'� D C
0
0;1.f0/Œ'�C

zR1Œ'�;

B2.f0/Œ'� D C
0
1;1.f0/Œ'�C

zR2Œ'�;

B3.f0/Œ'� D
�
C 01;2 � C

0
3;2

�
.f0/Œ'�C zR3Œ'�;

B4.f0/Œ'� D C
0
2;2.f0/Œ'�C

zR4Œ'�

(3.23)

for all ' 2 Hr�1.S/, where

k zRi Œ'�kHr�1 � Ck'kHr 0�1 ; ' 2 Hr�1.S/; 1 � i � 4: (3.24)
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Setting
ai WD ai .f0/; �i WD �i .f0/; i D 1; 2; (3.25)

see (3.13) and (3.15), we infer from (3.12), (3.14), (3.21)-(3.25), and the algebraic relation

C 0n;m.f0/C C
0
nC2;m.f0/ D C

0
n;m�1.f0/; m � 1;

that
@‰i .f0/Œf � D Ti .f0/Œf �C Ti;lot.f0/Œf �; i D 1; 2; (3.26)

where

T1.f0/Œf � WD
�
C 00;2 � C

0
2;2

�
.f0/Œ.a1 � �2 � f

0
0a2/f

0�

C C 01;2.f0/Œ.3.�1 C f
0
0a1/C a2/f

0�

C C 03;2.f0/Œ.�1 C f
0
0a1 � a2/f

0�

C �1
�
3f 00C

0
0;3 � 6C

0
1;3 � 6f

0
0C

0
2;3 C 2C

0
3;3 � f

0
0C

0
4;3

�
.f0/Œf

0�

C �2
�
C 00;3 C 6f

0
0C

0
1;3 � 6C

0
2;3 � 2f

0
0C

0
3;3 C C

0
4;3

�
.f0/Œf

0�;

T2.f0/Œf � WD
�
C 01;2 � C

0
3;2

�
.f0/Œ.a1 C �2 � f

0
0a2/f

0� � C 00;2.f0/Œ.�1 C f
0
0a1 � a2/f

0�

C C 02;2.f0/Œ.�1 C f
0
0a1 C 3a2/f

0�

C �1
�
C 00;3 C 6f

0
0C

0
1;3 � 6C

0
2;3 � 2f

0
0C

0
3;3 C C

0
4;3

�
.f0/Œf

0�

C �2
�
� f 00C

0
0;3 C 2C

0
1;3 C 6f

0
0C

0
2;3 � 6C

0
3;3 � f

0
0C

0
4;3

�
.f0/Œf

0�

(3.27)
and

kTi;lot.f0/Œf �kHr�1 � Ckf kHr 0 ; f 2 Hr .S/; i D 1; 2: (3.28)

3.4. Localization of the Fréchet derivative

Using the formulas for @‰.f0/ provided in Section 3.3 and inspired by the papers [9, 10,
25], we prove in this section that the Fréchet derivative @‰.f0/ can be locally approxi-
mated by certain Fourier multipliers which are themselves generators of strongly contin-
uous analytic semigroups, see Proposition 3.3 and (3.40)–(3.41). The proof of Proposi-
tion 3.2 relies heavily on these properties and concludes this section.

To start, we choose for each " 2 .0; 1/ a set of smooth functions ¹�"j W 1 � j � N º in
C1.S; Œ0; 1�/, where the integer N D N."/ is sufficiently large, such that

supp�"j D I
"
j C 2�Z with I "j WD Œx

"
j � "; x

"
j C "�; x

"
j WD j"I

NX
jD1

�"j D 1 in C1.S/:
(3.29)

We call ¹�"j W 1 � j � N º an "-partition of unity. Moreover, associated to each "-partition
of unity, we choose a further set ¹�"j W 1 � j � N º � C1.S; Œ0; 1�/ with

supp�"j D J
"
j C 2�Z with J "j D Œx

"
j � 2"; x

"
j C 2"�I

�"j D 1 on supp�"j :
(3.30)



D. Böhme and B.-V. Matioc 14

Each "-partition of unity allows us to define a new norm on Hs.S/, s � 0, via the mapping�
f 7!

NX
jD1

k�"j f kHs

�
W Hs.S/! R;

which is equivalent to the standard norm. Indeed, it is straightforward to show there exists
a constant c D c."; s/ 2 .0; 1/ such that

ckf kHs �

NX
jD1

k�"j f kHs � c
�1
kf kHs ; f 2 Hs.S/: (3.31)

Following [27], we introduce the continuous path ˆ W Œ0; 1� ! L.Hr .S/;Hr�1.S//
defined by

ˆ.�/ WD
�

4�
.�‰1.f0/C‚‰3.f0//

d
d�
C

�

4�
.�f 00@‰1.�f0/ � @‰2.�f0//

C
�‚

4�
.@‰4.f0/C f

0
0@‰3.f0//C

�‚ ln.4/
4�

h � i; � 2 Œ0; 1�;

(3.32)

which connects the Fréchet derivative @‰.f0/Dˆ.1/, see (3.18), to the Fourier multiplier

ˆ.0/ D �
�

4�
H ı

d
d�
D �

�

4�

�
�

d2

d�2

�1=2
; (3.33)

see (3.4). In (3.33), we use that H is a Fourier multiplier with symbol .�i sign.k//k2Z.
The homotopyˆ will be used to conclude invertibility of ��ˆ.1/ from ��ˆ.0/ for

Re� large enough. In the arguments below, we use the estimate

kfgkHs � C.kf k1kgkHs C kgk1kf kHs /; with s 2 .1=2; 1/; (3.34)

which holds for all f; g 2 Hs.S/. The following proposition shows that the operator ˆ.�/
can be locally approximated by certain Fourier multipliers for all � 2 Œ0; 1�.

Proposition 3.3. Let 
 > 0 and 3=2< r 0<r <2. Then, there exists "2 .0;1/ together with
an "-partition of unity ¹�"j W 1 � j � N º, a constant K D K."/, and bounded operators

Aj;� 2 L.Hr .S/;Hr�1.S//; j 2 ¹1; : : : ; N º; � 2 Œ0; 1�;

such that
k�"jˆ.�/Œf � �Aj;� Œ�

"
j f �kHr�1 � 
k�

"
j f kHr CKkf kHr 0 (3.35)

for all j 2 ¹1; : : : ; N º, f 2 Hr .S/, and � 2 Œ0; 1�. The operators Aj;� are defined by

Aj;� WD �˛� .x
"
j /

�
�

d2

d�2

�1=2
C ˇ� .x

"
j /

d
d�
; j 2 ¹1; : : : ; N º; � 2 Œ0; 1�;

with the functions ˛� , ˇ� given by .see (2.2)/

˛� WD
�

4�
!�1.�f0/ and ˇ� WD

�

4�
.�‰1.f0/C‚‰3.f0//: (3.36)
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Proof. Let " 2 .0; 1/ and let ¹�"j W 1 � j � N º be an "-partition of unity with the asso-
ciated set ¹�"j W 1 � j � N º satisfying (3.30). In the following, we use the symbol C for
constants that are independent of " and denote constants that depend on " byK. Recalling
(3.19) and (3.20), the algebra property of Hr�1.S/ leads us to



�"j ��‚4� �@‰4.f0/C f 00@‰3.f0/�Œf �C �‚ ln.4/

4�
hf i

�




Hr�1
� Kkf kHr 0 (3.37)

for all j 2 ¹1; : : : ; N º, f 2 Hr .S/, and � 2 Œ0; 1�.
Moreover, since ‰k.f0/ 2 Hr�1.S/ ,! Cr�3=2.S/, k 2 ¹1; 3º, we use (3.30)2 and

(3.34) to derive that

k�"j ˇ�f
0
� ˇ� .x

"
j /.�

"
j f /

0
kHr�1 � Ck.‰1.f0/ �‰1.f0/.x

"
j //.�

"
j f /

0
kHr�1

C Ck.‰3.f0/ �‰3.f0/.x
"
j //.�

"
j f /

0
kHr�1

CKkf kHr�1 ;

where

Ck.‰k.f0/ �‰k.f0/.x
"
j //.�

"
j f /

0
kHr�1

� Ck�"j .‰k.f0/ �‰k.f0/.x
"
j //k1k.�

"
j f /

0
kHr�1 CKkf kHr 0

�



4
k�"j f kHr CKkf kHr 0 ; k 2 ¹1; 3º;

for all j 2 ¹1; : : : ;N º, f 2 Hr .S/, and � 2 Œ0; 1�, provided that " is sufficiently small, and
therefore,



�"j � ��4�‰1.f0/C �‚

4�
‰3.f0/

�
f 0 � ˇ� .x

"
j /.�

"
j f /

0






Hr�1
�



2
k�"j f kHr CKkf kHr 0 :

(3.38)
Finally, (3.26)–(3.28) and repeated use of Lemma B.2 lead us to



�"j �4���f 00@‰1.�f0/ � @‰2.�f0/�Œf � � ˛� .x"j /HŒ.�"j f /0�






Hr�1

�



2
k�"j f kHr CKkf kHr 0

(3.39)

for all j 2 ¹1; : : : ; N º, f 2 Hr .S/, and � 2 Œ0; 1�, provided that " is sufficiently small.
Gathering (3.37)–(3.39), the claim follows in view of (3.32).

Since ‰k.f0/ 2 Hr�1.S/, k 2 ¹1; 3º, there exists a constant � 2 .0; 1/ such that the
functions ˛� and ˇ� defined in (3.36) satisfy

� � ˛� � �
�1; jˇ� j � �

�1; � 2 Œ0; 1�:

Introducing the Fourier multiplier

A˛;ˇ WD �˛

�
�

d2

d�2

�1=2
C ˇ

d
d�
2L.Hs.S/;Hs�1.S//; ˛ 2 Œ�;��1�; ˇ 2 Œ���1; ��1�;



D. Böhme and B.-V. Matioc 16

it is straightforward to show, by using Fourier analysis techniques, that for all ˛ 2 Œ�; ��1�
and ˇ 2 Œ���1; ��1�,

� �A˛;ˇ W Hr .S/! Hr�1.S/ is an isomorphism for all Re� � 1. (3.40)

Moreover, there exists a constant �0 D �0.�/� 1 with the property that for all ˛ 2 Œ�; ��1�
and ˇ 2 Œ���1; ��1�,

�0k.� �A˛;ˇ /Œf �kHr�1 � j�jkf kHr�1 C kf kHr ; f 2 Hr .S/; Re� � 1: (3.41)

The relations (3.40)–(3.41) imply, in particular, that the operator A˛;ˇ generates a strongly
continuous analytic semigroup, cf. [2, Section I.1.2]. Moreover, together with Proposi-
tion 3.3 and the interpolation property

ŒHs0.S/;Hs1.S/�� D H.1��/s0C�s1.S/; � 2 .0; 1/; �1 < s0 � s1 <1; (3.42)

where Œ�; ��� is the complex interpolation functor, they enable us to prove Proposition 3.2.

Proof of Proposition 3.2. Let r 0 2 .3=2; r/ and �0 � 1 be the constant in (3.41). We may
use Proposition 3.3 with 
 WD 1=2�0 to find " 2 .0; 1/, an "-partition of unity ¹�"j W 1 �
j � N º, a constantK DK."/ > 0, operators Aj;� 2L.Hr .S/;Hr�1.S//, 1 � j � N and
� 2 Œ0; 1�, satisfying

2�0k�
"
jˆ.�/Œf � �Aj;� Œ�

"
j f �kHr�1 � k�

"
j f kHr C 2�0Kkf kHr 0 ; f 2 Hr .S/:

Furthermore, (3.41) yields for all 1 � j � N , � 2 Œ0; 1�, and Re� � 1

2�0k.� �Aj;� /Œ�
"
j f �kHr�1 � 2j�jk�

"
j f kHr�1 C 2k�

"
j f kHr ; f 2 Hr .S/:

Combining the above inequalities, we get

2�0


�"j .� �ˆ.�//Œf �

Hr�1

� 2�0


.� �Aj;� /Œ�

"
j f �




Hr�1 � 2�0



�"jˆ.�/Œf � �Aj;� Œ�
"
j f �




Hr�1

� 2j�j


�"j f 

Hr�1 C



�"j f 

Hr � 2�0Kkf kHr 0 :

Using (3.31), (3.42), and Young’s inequality we conclude that there exist constants � � 1
and ! > 1 such that

�k.� �ˆ.�//Œf �kHr�1 � j�j kf kHr�1 C kf kHr (3.43)

for all � 2 Œ0; 1�, Re� � !, and f 2 Hr .S/.
Since ! �ˆ.0/ D ! �A�=4�;0 is an isomorphism, see (3.33) and (3.40), the method

of continuity, cf. [2, Proposition I.1.1.1] and (3.43) imply that ! � ˆ.1/ D ! � @‰.f0/
is also an isomorphism. This property combined with (3.43) (with � D 1) leads us to the
desired conclusion, see [2, Section I.1.2].
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3.5. Proof of the main results

This section is devoted to the proof of the main results in Theorems 1.1 and 1.2.

Proof of Theorem 1.1. The proof follows from (3.16) and Proposition 3.2, by using the
abstract parabolic theory in [24, Chapter 8]. Given the substantial resemblance of the
arguments to those in the non-periodic case, see the proof of [27, Theorem 3.2], we refrain
from presenting them herein.

It remains to establish Theorem 1.2. For this we define

bHs.S/ WD ®f 2 Hs.S/ W hf i D 0
¯
; s � 0;

and infer from (1.4) and (3.10) that ‰.f / 2 bHr�1.S/ for all f 2 Hr .S/, r 2 .3=2; 2/.
Therefore, the mapping

y‰ WD ‰
ˇ̌bHr .S/ W bHr .S/! bHr�1.S/

is well-defined and smooth, see (3.16). Moreover, for initial data f0 2bHr .S/, the evolution
problem (3.10) is equivalent to

df
dt
.t/ D y‰.f .t//; t > 0; f .0/ D f0; (3.44)

which is also of parabolic type. Indeed, given f0 2 bHr .S/, the Fréchet derivative @y‰.f0/
is the generator of a strongly continuous analytic semigroup in L.bHr�1.S//. This is a
consequence of [2, Corollary I.1.6.3] since, observing that bHs.S/ is the orthogonal com-
plement of the set of constant functions in Hs.S/, s � 0, we may interpret @‰.f0/ as the
matrix operator

@‰.f0/ D

�
@y‰.f0/ 0

0 0

�
W bHr .S/˚R! bHr�1.S/˚R:

It thus remains to study the stability properties of the zero solution to (3.44). This is
advantageous because in contrast to @‰.0/, the Fréchet derivative @y‰.0/ does not have
zero as an eigenvalue, when assuming (1.5), as the next lemma shows.

Lemma 3.4. The spectrum �.@y‰.0// of @y‰.0/ 2 L.bHr .S/;bHr�1.S// is given by

�
�
@y‰.0/

�
D

²
�
�k2 C‚

4�jkj
W k 2 N

³
: (3.45)

Proof. In view of (3.4), (3.7), (3.9), (3.12), (3.13), (3.18), (3.33), and Lemma 3.1, we have

@‰.0/ D
‚

4�
B0.0/ �

�

4�

�
�

d2

d�2

�1=2
:
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The operator B0.0/ is actually also a Fourier multiplier. Indeed, letting S 2 L.bHr�1.S//
denote the operator which associates to each function f 2 bHr�1.S/ its antiderivative, that
is,

SŒf �.�/ WD

Z �

0

f .s/ ds C
1

2�

Z 2�

0

sf .s/ ds; � 2 S;

integration by parts leads to

B0.0/Œf �.�/ D
1

2�

Z �

��

ln.sin2.s=2//f .� � s/ ds D HŒSŒf ��.�/; � 2 S:

The relation (3.45) is now an immediate consequence of the latter relation.

We are now in a position to prove Theorem 1.2, which is based on asymptotic theory
for abstract parabolic problems from [24, Chapter 9].

Proof of Theorem 1.2. In order to establish (i), let (1.5) be satisfied. Then, in view of
Lemma 3.4, we have

sup
®
Re� W � 2 �.@y‰.0//

¯
� �#0 < 0:

Therefore, the assumptions of [24, Theorem 9.1.2] are fulfilled in the context of the evo-
lution problem (3.44) and, together with Theorem 1.1, we conclude Theorem 1.2 (i).

Concerning (ii), assume now that � C‚ < 0. Then,8̂<̂
:�

� C‚

4�
2 �C.@y‰.0// WD �.@y‰.0// \ ¹� 2 C W Re� > 0ºI

inf
®
Re� W � 2 �C.@y‰.0//

¯
> 0:

A direct application of [24, Theorem 9.1.3] provides the desired instability result.

A. Some classes of (singular) integral operators

In this section, we establish several important mapping properties for the (singular) inte-
gral operators Bp;qn;m; Cn;m, and B0 introduced in (3.1), (3.2), and (3.7).

We start by relating the two families of singular integral operators B0;qn;m and Cn;m.
To this end, we define for integers m; n; q 2 N0, ` 2 ¹1; 2º, and Lipschitz continuous
mappings a D .a1; : : : ; am/ W R! Rm; b D .b1; : : : ; bn/ W R! Rn; c D .c1; : : : ; cq/ W
R! Rq the integral operator

A`;qn;m.ajb/Œc; '�.�/ WD
1

2�

Z �

��

24Qn
iD1

TŒ�;s�bi
tŒs�

Qq
iD1

ıŒ�;s�ci=2

tŒs�Qm
iD1

�
1C

�TŒ�;s�ai
tŒs�

�2� 1

t`
Œs�

�

Qn
iD1

ıŒ�;s�bi=2

s=2

Qq
iD1

ıŒ�;s�ci=2

s=2Qm
iD1

�
1C

� ıŒ�;s�ai=2
s=2

�2� 1

.s=2/`

35'.� � s/ ds;

(A.1)
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where ' 2 L2.S/ and � 2 R (see (2.6) and (3.3)). The following relation:

B0;qn;m.ajb/Œc; '� D A
1;q
n;m.ajb/Œc; '�C CnCq;m.a/Œ.b; c/; '�; m; n; q 2 N0; (A.2)

and the fact that the operators A`;qn;m are regularizing, see Lemma A.2, will enable us to
transfer mapping properties obtained for the operators Cn;m, see Section A.1, to the oper-
ators B0;qn;m (which have kernels with a higher degree of nonlinearity than the former). We
note that A`;qn;m.ajb/Œc; '� is 2�-periodic if a;b, and c have this property.

Before establishing mapping properties for these operators, we collect below some
useful elementary inequalities:

j tanh.x/j � jxj and j tanh.x/ � xj � jx tanh2.x/j; (A.3)

jyj � j tan.y/j and j tan.y/ � yj � jy2 tan.y/j; (A.4)ˇ̌̌̌
TŒx;s�d

tŒs�

ˇ̌̌̌
�

ˇ̌̌̌
ıŒx;s�d=2

tŒs�

ˇ̌̌̌
�

ˇ̌̌̌
ıŒx;s�d

s

ˇ̌̌̌
�

ˇ̌̌̌
s=2

tŒs�

ˇ̌̌̌
� kd 0k1

ˇ̌̌̌
s=2

tŒs�

ˇ̌̌̌
� kd 0k1; d 2W1;1.S/;

(A.5)

for x 2 R, y 2 .��=2; �=2/ and 0 ¤ s 2 .��; �/.
When estimating these operators, the standard norm on Hr .S/, defined by means of

the Fourier transform, is not so practical. Instead of using this norm, we recall the classical
identity Hr .S/ DWr;2.S/ for all r � 0, cf., e.g., [34]. For non-integer r > 0 it holds that

Wr;2.S/ WD
®
v 2WŒr�;2.S/ W Œv�Wr;2 <1

¯
; r D Œr�C ¹rº; Œr� 2 N0; ¹rº 2 .0; 1/;

where

Œv�2Wr;2 WD

Z �

��

Z �

��

ˇ̌
v.Œr�/.� C y/ � v.Œr�/.�/

ˇ̌2
jyj1C2¹rº

d� dy D
Z �

��



�yv.Œr�/ � v.Œr�/

22
jyj1C2¹rº

dy

and �yv WD v.� C y/ is the left shift operator. The space Wr;2.S/ is equipped with the
norm

kvk2Wr;2 WD kvk
2
WŒr�;2 C Œv�

2
Wr;2 :

Using Plancherel’s identity, it is easy to verify the norms k�kHr and k�kWr;2 are equivalent.

A.1. Estimates for the operators Cn;m

In Lemma A.1, we gather some useful mapping properties of the singular integral opera-
tors Cn;m.

Lemma A.1. Let n;m2N0, aD .a1; : : : ;am/ WR!Rm, and bD .b1; : : : ; bn/ WR!Rn.

(i) Given a 2 W1;1.R/m, there exists a constant C > 0 depending only on n; m
and ka0k1 such that for all b 2W1;1.R/n and � 2 R we have

kCn;m.a/Œb; ��kL.L2.S/;L2..���;�C�/// � C
nY
iD1

kb0ik1: (A.6)

Moreover, Cn;m 2 C1�.W1;1.S/m;Ln
sym.W

1;1.S/;L.L2.S////.
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(ii) Given n 2 N, r 2 .3=2; 2/, � 2 .5=2 � r; 1/, and a 2 Hr .S/n, there exists a
constant C > 0 that depends only on n; m; r , and kakHr (and on � in (A.8)),
such that for all b 2 Hr .S/n and ' 2 Hr�1.S/, we have

kCn;m.a/Œb; '�k2 � Ckb01k2k'kHr�1

nY
iD2

kb0ikHr�1 (A.7)

and
kCn;m.a/Œb; '� � 'Cn�1;m.a/Œb2; : : : ; bn; b01�k2

� Ckb1kH� k'kHr�1

nY
iD2

kb0ikHr�1 :
(A.8)

(iii) Given r 2 .3=2; 2/ and a 2 Hr .S/m, there exists a constant C > 0 that depends
only on n; m; r and kakHr such that for all b 2 Hr .S/n and ' 2 Hr�1.S/, we
have

kCn;m.a/Œb; '�kHr�1 � Ck'kHr�1

nY
iD1

kb0ikHr�1 : (A.9)

(iv) Given n 2 N, 3=2 < r 0 < r < 2, and a 2 Hr .S/m, there exists a constant C > 0

that depends only on n; m; r; r 0, and kakHr such that for all b 2 Hr .S/n and
' 2 Hr�1.S/, we have

kCn;m.a/Œb; '� � 'Cn�1;m.a/Œb2; : : : ; bn; b01�kHr�1

� Ckb1kHr 0 k'kHr�1

nY
iD2

kbikHr :
(A.10)

Proof. The claim (i) is established in [26, Lemma A.1] in the case � D 0. The result for
� ¤ 0 is obtained from the result for � D 0 via the identity

Cn;m.a/Œb; '�.�/ D Cn;m.��a/Œ��b; ��'�.� � �/; �; � 2 R:

Moreover, the proof of (ii) is similar to that of [1, Lemma 4] and we therefore omit it.
Finally, (iii) and (iv) can be established by arguing analogously as in the nonperiodic
version of these results, cf. [1, Lemmas 5 and 6].

A.2. Estimates for the operators A
`;q
n;m and B

p;q
n;m

We study the integral operators Bp;qn;m and A`;qn;m and show first in Lemma A.2 that A`;qn;m
regularizes, the same being true for Bp;qn;m provided that p � 1, see Lemma A.6.

Lemma A.2. Let n;m; p; q 2 N0 with 1 � p � nC q C 1, ` 2 ¹1; 2º, r 2 .3=2; 2/, and
let .a;b; c/ 2W1;1.S/mCnCq be given. Then,

A`;qn;m.ajb/Œc; ��; B
p;q
n;m.ajb/Œc; �� 2 L.L1.S/;C.S//; (A.11)
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and there exists a constant C > 0 that depends only on n;m; p; q, and k.a0; b0/k1 such
that for all ' 2 L1.S/, we have

A`;qn;m.ajb/Œc; '�

1 C 

Bp;qn;m.ajb/Œc; '�

1 � Ck'k1 qY

iD1

kc0ik1: (A.12)

Moreover, if .a; b; c/ 2 C1.S/mCnCq , there exists a constant C > 0 depending only on
n;m; q, and k.a0;b0/k1 such that for all ' 2 C.S/, we have

A1;qn;m.ajb/Œc; '�

C1 � Ck'k1

qY
iD1

kcikC1 : (A.13)

Proof. To start, we denote the kernels of the integral operators A`;qn;m and Bp;qn;m byKA and
KB , respectively, that is,

A`;qn;m.ajb/Œc; '�.�/ D
Z �

��

KA.�; s/'.� � s/ ds;

Bp;qn;m.ajb/Œc; '�.�/ D
Z �

��

KB.�; s/'.� � s/ ds; � 2 R:

(A.14)

We begin by establishing (A.12) for Bp;qn;m. Since p � 1 and n C q C 1 � p, we infer
from (A.5) that

jKB.�; s/j �

� nY
iD1

kb0ik1

�� qY
iD1

kc0ik1

�
jsjp�1

ˇ̌̌̌
s=2

tŒs�

ˇ̌̌̌nCqC1�p
� C

qY
iD1

kc0ik1

for � 2 R and 0 ¤ s 2 .��; �/, which proves (A.12) for Bp;qn;m.
Since A`;qn;m is linear in ci , 1 � i � q, it suffices to establish the estimate (A.12) for

A
`;q
n;m under the assumption that kc0k1 � 1. Let F WRnCqCm!R be the locally Lipschitz

continuous function defined by

F.x; y; z/ D
1

2�

�Qn
iD1 xi

��Qq
iD1 yi

�Qm
iD1.1C z

2
i /

for .x; y; z/ 2 RnCqCm. (A.15)

Given � 2R, s ¤ 0, and dD .d1; : : : ; dl / 2W1;1.S/l , l 2N, we introduce the shorthand
notation

TŒ�;s�d
tŒs�

WD

�
TŒ�;s�d1

tŒs�
; : : : ;

TŒ�;s�dl

tŒs�

�
: (A.16)

Together with (A.5), we may now estimate for � 2 R and 0 ¤ s 2 .��; �/:

jKA.�; s/j � C

ˇ̌̌̌
ˇ 1t`
Œs�

�
1

.s=2/`

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
1

.s=2/`

ˇ̌̌̌ ˇ̌̌̌
F

�
TŒ�;s�b
tŒs�

;
ıŒ�;s�c=2
tŒs�

;
TŒ�;s�a
tŒs�

�
� F

�
ıŒ�;s�b=2
s=2

;
ıŒ�;s�c=2
s=2

;
ıŒ�;s�a=2
s=2

�ˇ̌̌̌
:

(A.17)
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In view of (A.3) and (A.4), we haveˇ̌̌̌
ˇ 1t`
Œs�

�
1

.s=2/`

ˇ̌̌̌
ˇ � 2jsj2�`; 0 ¤ s 2 .��; �/; ` 2 ¹1; 2º;ˇ̌̌̌

TŒ�;s�d
tŒs�

�
ıŒ�;s�d=2
s=2

ˇ̌̌̌
C

ˇ̌̌̌
ıŒ�;s�d=2
tŒs�

�
ıŒ�;s�d=2
s=2

ˇ̌̌̌
� C jsj2; 0 ¤ s 2 .��; �/; � 2 R;

with C depending only on kd0k1. These estimates together with (A.17) immediately
imply that

jKA.�; s/j � C jsj
2�`; 0 ¤ s 2 .��; �/; � 2 R; ` 2 ¹1; 2º; (A.18)

and the desired estimate (A.12) for A`;qn;m follows.
Since ' 2C.S/, the continuity of parameter integrals implies that bothA`;qn;m.ajb/Œc;'�

and Bp;qn;m.ajb/Œc; '� belong to C.S/, and thus, the density of C.S/ in L1.S/ leads us to
(A.11).

It remains to establish (A.13). To this end, we first assume that ' 2 C1.S/. Since

KA.�; s/'.� � s/ 2 C1.S/; 0 ¤ s 2 .��; �/;

KA.�; �/'.� � �/ 2 C1.Œ��; ��/; � 2 R;

Fubini’s theorem and integration by parts imply that A1;qn;m.ajb/Œc; '� is weakly differen-
tiable with�

A1;qn;m.ajb/Œc; '�
�0
.�/

D .KA.�;��/ �KA.�; �//'.� � �/C

Z �

��

.@�KA C @sKA/.�; s/'.� � s/ ds

for � 2 R, hence, we have�
A1;qn;m.ajb/Œc; '�

�0
D 2

1 � .�1/nCqC1

2�

Qn
iD1.ıŒ�;��bi=�/

Qq
iD1.ıŒ�;��ci=�/Qm

iD1

�
1C

�
ıŒ�;��ai=�

�2� '.� � �/

�

C

nX
jD1

b0j

2

�
A
2;q
n�1;m.ajbj /Œc; '� � B

1;q
nC1;m.ajb; bj /Œc; '�

�
C

qX
jD1

c0j

2
A2;q�1n;m .ajb/Œcj ; '�

�
nC q C 1

2

�
A2;qn;m.ajb/Œc; '�C B

1;q
n;m.ajb/Œc; '�

�
C

mX
jD1

h
A
2;q
nC2;mC1.a; aj jb; aj ; aj /Œc; '�C B

1;q
nC2;mC1.a; aj jb; aj ; aj /Œc; '�

� a0jA
2;q
nC1;mC1.a; aj jb; aj /Œc; '�C a

0
jB

1;q
nC3;mC1.a; aj jb; aj ; aj ; aj /Œc; '�

i
;

(A.19)
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where we use the notation

bj WD .b1; : : : ; bj�1; bjC1; : : : ; bn/; 1 � j � n;

cj WD .c1; : : : ; cj�1; cjC1; : : : ; cq/; 1 � j � q:
(A.20)

The remaining claim (A.13) follows now from the previous relation and (A.11) in view
of the density of C1.S/ in C.S/.

We next study the singular integral operator B0;qn;m.

Lemma A.3. Let n;m; q 2 N0 and let .a;b/ 2W1;1.S/mCn be given. Then, there exists
a constant C > 0 that depends only on n; m; q, and k.a0; b0/k1 such that for all c 2
W1;1.S/q and ' 2 L2.S/, we have



B0;qn;m.ajb/Œc; '�

2 � Ck'k2 qY
iD1

kc0ik1: (A.21)

Proof. The claim follows directly from (A.2), Lemma A.1 (i), and Lemma A.2.

Lemma A.4. Let n;m;q 2N0, r 2 .3=2;2/, and .a;b/ 2Hr .S/mCn be given. Then, there
exists a constant C > 0 that depends only on n;m; q; r , and k.a; b/kHr such that for all
c 2 Hr .S/q and ' 2 Hr�1.S/, we have



B0;qn;m.ajb/Œc; '�

Hr�1 � Ck'kHr�1

qY
iD1

kcikHr : (A.22)

Proof. The claim follows immediately from equation (A.2), Lemma A.1 (iii), (A.12), and
(A.19).

The next result shows that the (singular) integral operators Bp;qn;m are locally Lipschitz
continuous with respect to .a;b; c/.

Lemma A.5. Given n;m; p; q 2 N0 with p � nC q C 1, we have�
.a;b; c/ 7! B0;qn;m.ajb/Œc; ��

�
2 C1�.W1;1.S/mCnCq;L.L2.S///; (A.23)�

.a;b; c/ 7! Bp;qn;m.ajb/Œc; ��
�
2 C1�.W1;1.S/mCnCq;L.L1.S/;C.S///; p � 1:

(A.24)

Proof. Given .a;b; c/; .Qa; Qb; Qc/ 2W1;1.S/mCnCq , ' 2 C1.S/, and p 2 N0, we have

Bp;qn;m.ajb/Œc; '� � B
p;q
n;m.Qaj Qb/ŒQc; '�

D

qX
iD1

Bp;qn;m.ajb/Œ Qc1; : : : ; Qci�1; ci � Qci ; ciC1; : : : ; cq; '�

C

nX
iD1

�
Bp;qn;m.aj Qb1; : : : ; Qbi�1; bi ; : : : ; bn/ � B

p;q
n;m.aj Qb1; : : : ; Qbi ; biC1; : : : ; bn/

�
ŒQc; '�
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C

mX
iD1

�
B
p;q
nC2;mC1. Qa1; : : : ; Qai ; ai ; : : : ; amj

Qb; Qai ; Qai /

� B
p;q
nC2;mC1. Qa1; : : : ; Qai ; ai ; : : : ; amj

Qb; Qai ; ai /
�
ŒQc; '�

C

mX
iD1

�
B
p;q
nC2;mC1. Qa1; : : : ; Qai ; ai ; : : : ; amj

Qb; Qai ; ai /

� B
p;q
nC2;mC1. Qa1; : : : ; Qai ; ai ; : : : ; amj

Qb; ai ; ai /
�
ŒQc; '�:

The first term on the right-hand side may be estimated by using Lemma A.3 if p D 0 and
Lemma A.2 whenever p � 1. For the remaining terms, it thus suffices to show that given
d; Qd 2W1;1.S/, we have

B0;qnC1;m.ajb; d /Œc; '� � B0;qnC1;m.ajb; Qd/Œc; '�

2 � Ckd � QdkW1;1k'k2 (A.25)

for (A.23), respectively,

Bp;qnC1;m.ajb; d /Œc; '� � Bp;qnC1;m.ajb; Qd/Œc; '�

1 � Ckd � QdkW1;1k'k1; p � 1;

(A.26)
for (A.24), with a constant C that depends only on k.a;b; c; d; Qd/kW1;1 and n;m; p; q.

To show (A.25)-(A.26), we infer from the fundamental theorem of calculus that

j.x � tanh.x// � .y � tanh.y//j � .x2 C y2/jx � yj; x; y 2 R: (A.27)

With F WRnCqCm!R denoting the smooth function defined in (A.15) we then compute,
by using also the notation (A.16), that�

B
p;q
nC1;m.ajb; d /Œc; '� � B

p;q
nC1;m.ajb; Qd/Œc; '�

�
.�/

D PV
Z �

��

F

�
TŒ�;s�b
tŒs�

;
ıŒ�;s�c=2
tŒs�

;
TŒ�;s�a
tŒs�

�
TŒ�;s�d � TŒ�;s� Qd

tŒs�

'.� � s/

t
1�p

Œs�

ds

D Bp;qC1n;m .ajb/Œc; d � Qd; '�.�/ �
Z �

��

K.�; s/'.� � s/ ds

for � 2 R and p 2 N0, where, given � 2 R and 0 ¤ s 2 .��; �/, we set

K.�; s/ WD F

�
TŒ�;s�b
tŒs�

;
ıŒ�;s�c=2
tŒs�

;
TŒ�;s�a
tŒs�

�
�

�
ıŒ�;s�d=2 � TŒ�;s�d

�
�
�
ıŒ�;s� Qd=2 � TŒ�;s� Qd

�
t
2�p

Œs�

:

The function Bp;qC1n;m .ajb/Œc; d � Qd; '� may be estimated by using Lemma A.3 if p D 0
and Lemma A.2 for p � 1, and we are left to estimate the integral term. To this end
we rely on (A.27) and (A.5) to obtain that jK.�; s/j � Ckd � Qdk1 for all � 2 R and
0 ¤ s 2 .��; �/, and therefore,ˇ̌̌̌ Z �

��

K.�; s/'.� � s/ ds
ˇ̌̌̌
� Ckd � Qdk1k'k1 � Ckd � Qdk1k'k2; � 2 R:

This completes the proof.
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Using Lemma A.5, we next prove that the operators Bp;qn;m, with p � 1, have a regular-
izing effect.

Lemma A.6. Let n;m;p; q 2 N0, 1 � p � nCqC1, and .a;b; c/2C1.S/mCnCq . Then,
there exists a constant C > 0 that depends only on n;m; p; q, and k.a0; b0/k1 such that
for all ' 2 L2.S/, we have

Bp;qn;m.ajb/Œc; '�

H1 � Ck'k2

qY
iD1

kc0ik1: (A.28)

Furthermore, given r 2 .3=2;2/ and .a;b;c/2Hr .S/mCnCq , there exists a constantC >0
that depends only on n;m; p; q, and k.a;b/kHr such that for all ' 2 Hr�1.S/, we have

Bp;qn;m.ajb/Œc; '�

Hr � Ck'kHr�1

qY
iD1

kcikHr : (A.29)

Proof. We first assume that .a;b; c; '/ 2 C1.S/mCnCqC1. Recalling the notation (A.14),
the theorem on the differentiation of parameter integrals ensures that Bp;qn;m.ajb/Œc; '� is
continuously differentiable with�
Bp;qn;m.ajb/Œc; '�

�0
.�/ D

Z �

��

@�KB.�; s/'.� � s/ �KB.�; s/@s.'.� � s// ds; � 2 R:

Using integration by parts, we then get

.Bp;qn;m.ajb/Œc; '�/
0

D
1

2

nX
jD1

b0j
�
B
p�1;q
n�1;m.ajbj / � B

pC1;q
nC1;m.ajb; bj /

�
Œc; '�C

1

2

qX
jD1

c0jB
p�1;q�1
n;m .ajb/Œcj ; '�

C

mX
jD1

a0j
�
B
pC1;q
nC3;mC1.a; aj jb; aj ; aj ; aj / � B

p�1;q
nC1;mC1.a; aj jb; aj /

�
Œc; '�

C

mX
jD1

�
B
p�1;q
nC2;mC1.a; aj jb; aj ; aj /C B

pC1;q
nC2;mC1.a; aj jb; aj ; aj /

�
Œc; '�

C
p � n � q � 1

2

�
Bp�1;qn;m .ajb/C BpC1;qn;m .ajb/

�
Œc; '�;

with the observation that the last term is meaningful only if 1 � p � nC q, otherwise,
it is not present in the formula above. The functions bj , 1 � j � n, and cj , 1 � j � q,
are as defined in (A.20). A standard density argument together with Lemma A.5 ensures
now thatBp;qn;m.ajb/Œc; '� 2 H1.S/ for all .a;b; c/ 2 C1.S/mCnCq and ' 2 L2.S/, the esti-
mate (A.28) being a direct consequence of Lemmas A.2 and A.3 while the estimate (A.29)
follows from Lemmas A.2, A.4, and (A.28).

The next result shows that the operator B0 defined in (3.7) has similar regularity prop-
erties as Bp;qn;m with 1 � p � nC q C 1, see (A.29).
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Lemma A.7. Let r 2 .3=2; 2/. Given f 2 Hr .S/, there exists a constant C > 0 that
depends only on kf kHr such that for all ' 2 Hr�1.S/ we have

kB0.f /Œ'�kHr � Ck'kHr�1 : (A.30)

Proof. We first prove thatB0.f /2L.L2.S/;L1.S// if f 2W1;1.S/. Indeed, using (2.5)
and the fact that ln.sin.�=2/2/ 2 L2.S/, we deduce, in view of the inequality

j ln.sin2.s=2/C sinh2.ıŒ�;s�f=2//j

� j ln.sin2.s=2//j C ln.1C sinh2.�kf 0k1//; �; s 2 S;

that for ' 2 L2.S/ we have

jB0.f /Œ'�.�/j�

Z �

��

�
j ln.sin2.s=2//j C ln.1C sinh2.�kf 0k1//

�
j'.� � s/jds � Ck'k2:

We now assume that f 2 Hr .S/ and ' 2 C1.S/. Using the theorem on the differenti-
ation of parameter integrals and subsequently integration by parts, we find that B0.f /Œ'�
is continuously differentiable and its derivative is given by

.B0.f /Œ'�/
0
D f 0B2.f /Œ'�C B1.f /Œ'� 2 Hr�1.S/;

cf. Lemmas A.4 and A.6. The claim follows now by a standard density argument in view
of Lemmas A.4 and A.6.

A.3. Fréchet differentiability

This section is devoted to establishing the following result.

Corollary A.8. Given r 2 .3=2; 2/, the mappings�
f 7! B0;qn;m.f /

�
W Hr .S/! L.Hr�1.S//;�

f 7! B0.f /
�
;
�
f 7! Bp;qn;m.f /

�
W Hr .S/! L.Hr�1.S/;Hr .S//; 1 � p � nC q C 1;

are smooth.

The proof of Corollary A.8 is presented at the end of this section, as it requires some
preparation. Let us first note that Lemmas A.4 and A.6 ensure that the mappings defined
above are well-defined. In order to establish the smoothness of these mappings, we further
introduce the operators

B0;q;kn;m W Hr .S/! Lk
sym.H

r .S/;L.Hr�1.S///;

Bp;q;kn;m W Hr .S/! Lk
sym.H

r .S/;L.Hr�1.S/;Hr .S///; 1 � p � nC q C k C 1;

(A.31)
by

Bp;q;kn;m .f /Œf1; : : : ; fk �Œ�� WD B
p;qCk
n;m .f; : : : ; f jf; : : : ; f /Œf; : : : ; f; f1; : : : ; fk ; ��:

Let us note that Bp;qn;m.f / D B
p;q;0
n;m .f /. The next lemma is the main step towards proving

the smoothness property for the operators Bp;qn;m.
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Lemma A.9. The mappings (A.31) are Fréchet differentiable. Furthermore, the Fréchet
derivative @Bp;q;kn;m .f0/ is given by

@Bp;q;kn;m .f0/Œf �Œf1; : : : ; fk � D n
�
B
p;q;kC1
n�1;m .f0/ � B

pC2;q;kC1
nC1;m .f0/

�
Œf1; : : : ; fk ; f �

C 2m
�
B
pC2;q;kC1
nC3;mC1 .f0/ � B

p;q;kC1
nC1;mC1.f0/

�
Œf1; : : : ; fk ; f �

C qBp;q�1;kC1n;m .f0/Œf1; : : : ; fk ; f � (A.32)

for f0; f; f1; : : : ; fk 2 Hr .S/, where terms with negative indices are to be neglected.

Proof. Defining � WD �p;qn;m by the formula

�.�; s/ WD
1

2�

� tanh.�/
tŒs�

�n� �
tŒs�

�q�
1C

� tanh.�/
tŒs�

�2�m tpŒs�; � 2 R; 0 ¤ s 2 .��; �/;

we have for � 2 R, f; f1; : : : ; fk 2 Hr .S/, and ' 2 Hr�1.S/

Bp;q;kn;m .f /Œf1; : : : ; fk �Œ'�.�/ D PV
Z �

��

� kY
iD1

ıŒ�;s�fi=2

tŒs�

�
�
�
ıŒ�;s�f=2; s

�'.� � s/
tŒs�

ds;

the PV being needed only when p D 0. Our goal is to prove that

@Bp;q;kn;m .f0/Œf �Œf1; : : : ; fk �Œ'�.�/

D PV
Z �

��

� kY
iD1

ıŒ�;s�fi=2

tŒs�

�
.ıŒ�;s�f=2/@��.ıŒ�;s�f0=2; s/

'.� � s/

tŒs�
ds

(A.33)

for � 2 R, f0; f; f1; : : : ; fk 2 Hr .S/, and ' 2 Hr�1.S/, as straightforward computations
show that the formulas (A.32) and (A.33) are equivalent.

Using Taylor’s formula, we compute�
Bp;q;kn;m .f0 C f / � B

p;q;k
n;m .f0/ � @B

p;q;k
n;m .f0/Œf �

�
Œf1; : : : ; fk �Œ'�.�/

D PV
Z �

��

� kY
iD1

ıŒ�;s�fi=2

tŒs�

��
ıŒ�;s�f=2

�2 Z 1

0

.1 � �/@2��
�
ıŒ�;s�f�=2; s

�
d�
'.� � s/

tŒs�
ds;

(A.34)
where f� WD f0 C �f for � 2 Œ0; 1�, and @2�� D @

2
��

p;q
n;m is given by

@2��
p;q
n;m

D
1

t2
Œs�

°
n.n � 1/�

p;q
n�2;m C 2nq�

p;q�1
n�1;m C q.q � 1/�

p;q�2
n;m � 2m.2nC 1/�

p;q
n;mC1

� 2nq�
pC2;q�1
nC1;m � 2n2�pC2;qn;m C 8m.nC 1/�

pC2;q
nC2;mC1 C n.nC 1/�

pC4;q
nC2;m

� 2m.2nC 3/�
pC4;q
nC4;mC1 C 4mq�

pC2;q�1
nC3;mC1 � 4mq�

p;q�1
nC1;mC1

C 4m.mC 1/�
pC4;q
nC6;mC2 � 8m.mC 1/�

pC2;q
nC4;mC2 C 4m.mC 1/�

p;q
nC2;mC2

±
(A.35)
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in R� ..��;�/ n ¹0º/ and for all 0� p � nC qC kC 1. Recalling (A.5), in all the terms
on the right-hand side of (A.34) where �p;qn;m with p � 1 appear, the PV is not needed and
we may interchange the order of integration by using Fubini’s theorem.

Assume first that p � 1. We then infer from (A.34) and (A.35), after interchanging the
order of integration in the last line of (A.34), that�

Bp;q;kn;m .f0 C f / � B
p;q;k
n;m .f0/ � @B

p;q;k
n;m .f0/Œf �

�
Œf1; : : : ; fk �Œ'�

D

Z 1

0

.1 � �/
°
n.n � 1/B

p;q;kC2
n�2;m C 2nqB

p;q�1;kC2
n�1;m

C q.q � 1/Bp;q�2;kC2n;m � 2m.2nC 1/B
p;q;kC2
n;mC1

� 2nqB
pC2;q�1;kC2
nC1;m � 2n2BpC2;q;kC2n;m

C 8m.nC 1/B
pC2;q;kC2
nC2;mC1 C n.nC 1/B

pC4;q;kC2
nC2;m

� 2m.2nC 3/B
pC4;q;kC2
nC4;mC1

C 4mqB
pC2;q�1;kC2
nC3;mC1 � 4mqB

p;q�1;kC2
nC1;mC1

C 4m.mC 1/B
pC4;q;kC2
nC6;mC2 � 8m.mC 1/B

pC2;q;kC2
nC4;mC2

C 4m.mC 1/B
p;q;kC2
nC2;mC2

±
.f� /Œf1; : : : ; fk ; f; f �Œ'� d�:

(A.36)

Moreover, Lemma A.6 implies there exists a constant C > 0 such that for all kf kHr � 1

we have

�Bp;q;kn;m .f0 C f / � B
p;q;k
n;m .f0/ � @B

p;q;k
n;m .f0/Œf �

�
Œf1; : : : ; fk �




L.Hr�1.S/;Hr .S//

� Ckf k2Hr

kY
iD1

kfikHr ;

which proves (A.32) for p � 1.
Let now p D 0. In this case, the formula (A.36) is still valid (and defines a function

in Hr�1.S/). This formula is obtained again by interchanging the order of integration
in (A.34) via (A.35), but slightly more subtle arguments are needed when considering the
terms of (A.35) with pD 0 as the PV symbol appears in front of the first integral in (A.34).
More precisely, letting

I.�; s; �/ WD

 
kY
iD1

ıŒ�;s�fi=2

tŒs�

!�
ıŒ�;s�f=2

�2
.1 � �/@2��

�
ıŒ�;s�f�=2; s

�'.� � s/
tŒs�

denote the integrand in (A.34), it holds that

PV
Z �

��

�Z 1

0

I.�; s; �/ d�
�

ds D
Z �

0

�Z 1

0

I.�; s; �/C I.�;�s; �/ d�
�

ds

D

Z 1

0

�Z �

0

I.�; s; �/C I.�;�s; �/ ds
�

d� D
Z 1

0

�
PV

Z �

��

I.�; s; �/ ds
�

d�;
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by Fubini’s theorem and in view of the estimate

jI.�; s; �/C I.�;�s; �/j �
C

jsj5=2�r
; � 2 R; 0 ¤ s 2 .��; �/; � 2 Œ0; 1�:

Applying Lemmas A.4 and A.6, we conclude from (A.36) that there exists a constant
C > 0 such that for all kf kHr � 1, we have

�Bp;q;kn;m .f0 C f / � B

p;q;k
n;m .f0/ � @B

p;q;k
n;m .f0/Œf �

�
Œf1; : : : ; fk �




L.Hr�1.S//

� Ckf k2Hr

kY
iD1

kfikHr ;

which proves the claim for p D 0.

We now show the Fréchet differentiability of the operator B0 defined in (3.7).

Lemma A.10. Given r 2 .3=2; 2/, the map B0 W Hr .S/!L.Hr�1.S/;Hr .S// is Fréchet
differentiable and the Fréchet derivative @B0.f0/ is given by

@B0.f0/Œf � D 2B
1;0;1
1;1 .f0/Œf �C 2B

3;0;1
1;1 .f0/Œf �; f0; f 2 Hr .S/: (A.37)

Proof. We apply the same strategy as in the proof of Lemma A.9. Defining � by

�.�; s/ WD
1

2�
ln
�

t2
Œs�
C tanh2.�/

.1C t2
Œs�
/.1 � tanh2.�//

�
; 0 ¤ � 2 R; s 2 .��; �/;

we have

@��.�; s/ D
1

�

.1C t2
Œs�
/ tanh.�/

t2
Œs�
C tanh2.�/

;

@2��.�; s/ D
1

�

.1C t2
Œs�
/.1 � tanh2.�//.t2

Œs�
� tanh2.�//

.t2
Œs�
C tanh2.�//2

:

(A.38)

We prove that

@B0.f0/Œf �Œ'�.�/ D

Z �

��

�
ıŒ�;s�f=2

�
@��

�
ıŒ�;s�f0=2; s

�
'.� � s/ ds; (A.39)

since straightforward calculations show that (A.37) and (A.39) coincide. Using Taylor’s
formula, Fubini’s theorem, (A.38), and (A.39), we compute for � 2R, f0; f 2Hr .S/, and
' 2 Hr�1.S/ that

B0.f0 C f /Œ'�.�/ � B0.f0/Œ'�.�/ � @B0.f0/Œf �Œ'�.�/

D

Z �

��

�
ıŒ�;s�f=2

�2 Z 1

0

.1 � �/@2��
�
ıŒ�;s�f�=2; s

�
d� '.� � s/ ds
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D

Z 1

0

.1 � �/

Z �

��

�
ıŒ�;s�f=2

�2
@2��

�
ıŒ�;s�f�=2; s

�
'.� � s/ ds d�

D 2

Z 1

0

.1 � �/
°
B
1;0;2
0;2 C B

3;0;2
0;2 � B

1;0;2
2;2 � 2B

3;0;2
2;2

� B
5;0;2
2;2 C B

3;0;2
4;2 C B

5;0;2
4;2

±
.f� /Œf; f �Œ'� d�;

where f� D f0 C �f . Using (A.29), we thus find a constant C > 0 such that for all
f 2 Hr .S/ with kf kHr � 1, we have

kB0.f0 C f / � B0.f0/ � @B0.f0/Œf �kL.Hr�1.S/;Hr .S// � Ckf k
2
Hr ;

which proves the claim.

We are now in a position to establish Corollary A.8.

Proof of Corollary A.8. Recalling that Bp;qn;m.f / D B
p;q;0
n;m .f / for f 2 Hr .S/, the asser-

tion is a direct consequence of Lemmas A.9 and A.10.

B. Localization of the singular integral operators Cn;m

In this section, we show that the singular integral operators C 0n;m defined in (3.6) can be
locally approximated by Fourier multipliers, see Lemma B.2 for the precise statement. As
a starting point, we infer from (3.2) the following algebraic relations:�
Cn;m.Qa/ � Cn;m.a/

�
Œb; '�

D

mX
iD1

CnC2;mC1.a1; : : : ; ai ; Qai ; : : : ; Qam/Œb; ai C Qai ; ai � Qai ; '�; n 2 N0; m 2 N;

(B.1)
and

dCn;m.a/Œb; '� � Cn;m.a/Œb; d'�
D b1Cn;m.a/Œb2; : : : ; bn; d; '� � Cn;m.a/Œb2; : : : ; bn; d; b1'�; n 2 N; m 2 N0;

(B.2)
which hold for all a; Qa 2W1;1.S/m, b 2W1;1.S/n; d 2W1;1.S/, and ' 2 L2.S/.

The following commutator property, see [1, Lemma 12] for a similar result in a non-
periodic setting, is an important tool in the analysis that follows.

Lemma B.1. Given n; m 2 N0 and a; f 2 C1.S/, there exists a constant C > 0 that
depends only on n;m; r , and k.a; f /kC1 such that for all ' 2 L2.S/ we have

kaC 0n;m.f /Œ'� � C
0
n;m.f /Œa'�kH1 � Ck'k2: (B.3)

Proof. The proof is similar to that of [1, Lemma 12], and therefore we omit it.
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Let us now recall the definition of an "-partition of unity from Section 3.4. The central
result in this section is the following lemma.

Lemma B.2. Let n;m 2N0, 3=2 < r 0 < r < 2, f 2 Hr .S/, a;b 2 Hr�1.S/, and � > 0 be
given. Then, for any sufficiently small " 2 .0;1/, there exists a constantK >0 that depends
on "; n; m; kf kHr , and k.a; b/kHr�1 such that for all 1 � j � N and ' 2 Hr�1.S/, we
have




�"j aC 0n;m.f /Œb'� � a.x"j /b.x"j /.f 0.x"j //n�

1C .f 0.x"j //
2
�m HŒ�"j '�







Hr�1

� �k�"j 'kHr�1 CKk'kHr 0�1 :

(B.4)

The proof of Lemma B.2 relies heavily on the result provided by the next lemma.

Lemma B.3. Given n;m 2 N0, 3=2 < r < 2, � 2 .0;1/, and f 2 Hr .S/, for sufficiently
small " 2 .0; 1/ and all 1 � j � N , jyj � ", and ' 2 L2.S/, we have

T "j .f /Œ�y.�"j '/ � �"j '�

2 � �k�y.�"j '/ � �"j 'k2; (B.5)

where T "j .f / WD �
"
jCnC1;m.f; : : : ; f /Œf; : : : ; f; f � f

0.x"j /idR; ��.

Proof. Let " 2 .0; 1/. Since

T "j .f /Œ�y.�
"
j '/ � �

"
j '� D �

"
j

�
C 0nC1;m.f / � f

0.x"j /C
0
n;m.f /

�
Œ�y.�

"
j '/ � �

"
j '� 2 L2.S/;

we have by Lemma A.1 (i) that

kT "j .f /Œ�y.�
"
j '/ � �

"
j '�k2 D kT

"
j .f /Œ�y.�

"
j '/ � �

"
j '�kL2..x"j��;x

"
jC�//

: (B.6)

We now introduce the Lipschitz continuous function Fj W R! R that satisfies Fj D f on
J "j and F 0j D f

0.x"j / on R n J "j . Given � 2 .x"j � �; x
"
j C �/, we then have

T "j .f /Œ�y.�
"
j '/ � �

"
j '�.�/

D �"j .�/
1

�
PV

Z �

��

�

�
ıŒ�;s�f

s

�
ıŒ�;s�.f � f

0.x"j /idR/

s

.�y.�
"
j '/ � �

"
j '/.� � s/

s
ds

D �"j .�/
1

�
PV

Z �

��

�

�
ıŒ�;s�f

s

�
ıŒ�;s�.Fj � f

0.x"j /idR/

s

�
�y.�

"
j '/ � �

"
j '
�
.� � s/

s
ds

D
�
�"jCnC1;m.f; : : : ; f /Œf; : : : ; f; Fj � f

0.x"j /idR; �y.�
"
j '/ � �

"
j '�

�
.�/; (B.7)

where �.x/D xn.1C x2/�m, x 2R. Indeed, if on the one hand � 2 .x"j ��;x
"
j C�/ n J

"
j ,

this is a consequence of �"j .�/D 0. If on the other hand � 2 J "j , then f .�/D Fj .�/ by the
definition of Fj . Since jsj < � , we have � � s 2 .x"j � 3�=2; x

"
j C 3�=2/ for sufficiently

small ", while supp�"j \ .x
"
j � 3�=2;x

"
j C 3�=2/D I

"
j . Therefore, in the case � � s 62 J "j

it holds that � � s C y 62 I "j for all jyj � ", hence, �"j '.� � s/ D �y.�
"
j '/.� � s/ D 0. As

a direct consequence, the integrand is not zero at most when � � s 2 J "j , and in this case,
we also have f .� � s/ D Fj .� � s/. This proves (B.7).
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Lemma A.1 (i) together with (B.6), (B.7), and the definition of Fj enables us to deduce
that there exists a constant C > 0 such that for all 1 � j � N , jyj � ", and ' 2 L2.S/,
we have

kT "j .f /Œ�y.�
"
j '/ � �

"
j '�k2 � Ckf

0
� f 0.x"j /kL1.J "j /k�y.�

"
j '/ � �

"
j 'k2:

The estimate (B.5) follows by choosing " 2 .0;1/ sufficiently small since f 0 2 Cr�3=2.S/:

We are now in a position to establish Lemma B.2.

Proof of Lemma B.2. In the following, we denote constants that do not depend on " by C
and constants that depend on " by K.

Recalling that H D B0;00;0 , cf. (3.4), the relation H D A1;00;0 C C0;0, cf. (A.2), together
with Lemma A.2 yields

k.H � C0;0/Œ�
"
j '�kHr�1 � CkA

1;0
0;0Œ�

"
j '�kC1 � Ck�

"
j 'k1 � Kk'kHr 0�1 ;

and therefore,




�"j aC 0n;m.f /Œb'� � a.x"j /b.x"j /.f 0.x"j //nŒ1C .f 0.x"j //
2�m

HŒ�"j '�







Hr�1

�






�"j aC 0n;m.f /Œb'� � a.x"j /b.x"j /.f 0.x"j //nŒ1C .f 0.x"j //
2�m

C0;0Œ�
"
j '�







Hr�1

CKk'kHr 0�1 :

To estimate the first term on the left-hand side of the latter inequality, we write

�"j aC
0
n;m.f /Œb'� �

a.x"j /b.x
"
j /.f

0.x"j //
n�

1C .f 0.x"j //
2
�m C0;0Œ�

"
j '�

D a.T1 C T2/C b.x
"
j /.T3 C a.x

"
j /T4/;

where
T1 WD �

"
j C

0
n;m.f /Œ.b � b.x

"
j //'� � C

0
n;m.f /Œ�

"
j .b � b.x

"
j //'�;

T2 WD C
0
n;m.f /Œ�

"
j .b � b.x

"
j //'�;

T3 WD �
"
j aC

0
n;m.f /Œ'� � a.x

"
j /C

0
n;m.f /Œ�

"
j '�;

T4 WD C
0
n;m.f /Œ�

"
j '� �

.f 0.x"j //
n�

1C .f 0.x"j //
2
�mC0;0Œ�"j '�:

We consider these terms successively.

The term aT1. In view of Lemma B.1 and of the algebra property of Hr�1.S/, we have

kaT1kHr�1 � Kk.b � b.x
"
j //'k2 � Kk'kHr 0�1 : (B.8)
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The term aT2. We use Lemma A.1 (iii), (3.34), the identity �"j�
"
j D �

"
j , and the algebra

property of Hr�1.S/ to obtain, in view of b 2 Cr�3=2.S/, that is,

kaT2kHr�1 � Ck�
"
j .b � b.x

"
j //'kHr�1

� Ck�"j .b � b.x
"
j //k1k�

"
j 'kHr�1 CKk'kHr 0�1

� .�=3/k�"j 'kHr�1 CKk'kHr 0�1 ;

(B.9)

provided that " 2 .0; 1/ is sufficiently small.

The term b.x"j /T3. Since �"j�
"
j D �

"
j , we have T3 D T3;1 C T3;2 C T3;3, where

T3;1 WD .�
"
ja/

�
�"j C

0
n;m.f /Œ'� � C

0
n;m.f /Œ�

"
j '�

�
;

T3;2 WD �
"
j .a � a.x

"
j //C

0
n;m.f /Œ�

"
j '�;

T3;3 WD a.x
"
j /
�
�"jC

0
n;m.f /Œ�

"
j '� � C

0
n;m.f /Œ�

"
j .�

"
j '/�

�
;

and Lemma B.1 yields

kb.x"j /T3;1kHr�1 C kb.x
"
j /T3;3kHr�1 � Kk'kHr 0�1 :

Moreover, (3.34), Lemma A.1 (iii), and the property a 2 Cr�3=2.S/ lead us to

kb.x"j /T3;2kHr�1�Ck�
"
j .a � a.x

"
j //k1kC

0
n;m.f /Œ�

"
j '�kHr�1 CKkC

0
n;m.f /Œ�

"
j '�kHr 0�1

�.�=3/k�"j 'kHr�1 CKk'kHr 0�1 ;

provided that " 2 .0; 1/ is small enough, and therefore,

kb.x"j /T3kHr�1 � .�=3/k�
"
j 'kHr�1 CKk'kHr 0�1 : (B.10)

The term .ab/.x"j /T4. Using again the relation �"j�
"
j D �

"
j , we have T4 D T4;1 C T4;2,

where

T4;1 WD
.f 0.x"j //

n�
1C .f 0.x"j //

2
�m ��"jC0;0Œ�"j '� � C0;0Œ�"j .�"j '/��

�
�
�"jC

0
n;m.f /Œ�

"
j '� � C

0
n;m.f /Œ�

"
j .�

"
j '/�

�
;

T4;2 WD �
"
j

�
C 0n;m.f /Œ�

"
j '� �

.f 0.x"j //
n

Œ1C .f 0.x"j //
2�m

C0;0Œ�
"
j '�

�
;

and, by Lemma B.1,
kT4;1kHr�1 � Kk'k2: (B.11)

It remains to estimate the term T4;2 for which we first use Lemma A.1 (i) to deduce that

kT4;2k2 � Kk'k2: (B.12)
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In order to estimate the seminorm ŒT4;2�Wr�1;2 , we note, by using (B.1) together with the
identity f 0.x"j / D ıŒ�;s�.f

0.x"j /idR/=s, that

T4;2 D

n�1X
kD0

.f 0.x"j //
n�k�1�"jCkC1;m.f; : : : ; f /Œf; : : : ; f; f � f

0.x"j /idR; �
"
j '�

�

m�1X
kD0

.f 0.x"j //
n�

1C .f 0.x"j //
2
�m�k �"jC2;kC1.f; : : : ; f /Œf; f � f 0.x"j /idR; �

"
j '�

�

m�1X
kD0

.f 0.x"j //
nC1�

1C .f 0.x"j //
2
�m�k �"jC1;kC1.f; : : : ; f /Œf � f 0.x"j /idR; �

"
j '�:

Consequently,

ŒT4;2�Wr�1;2 � C0

 
n�1X
kD0

�
�"jCkC1;m.f; : : : ; f /Œf; : : : ; f; f � f

0.x"j /idR; �
"
j '�

�
Wr�1;2

C

m�1X
kD0

�
�"jC2;kC1.f; : : : ; f /Œf; f � f

0.x"j /idR; �
"
j '�

�
Wr�1;2

C

m�1X
kD0

�
�"jC1;kC1.f; : : : ; f /Œf � f

0.x"j /idR; �
"
j '�

�
Wr�1;2

!
:

(B.13)
Set

Sk WD �
"
jCkC1;m.f; : : : ; f /Œf; : : : ; f; f � f

0.x"j /idR; �
"
j '�; 0 � k � n � 1:

In order to estimate the Wr�1;2-seminorm of Sk , we write for y 2 .��; �/

�ySk � Sk D Sk;1 C Sk;2 C �
"
jSk;3;

where, using again (B.1), we have

Sk;1 WD.�y�
"
j � �

"
j /�yCkC1;m.f; : : : ; f /Œf; : : : ; f; f � f

0.x"j /idR; �
"
j '�;

Sk;2 WD�
"
jCkC1;m.f; : : : ; f /Œf; : : : ; f; f � f

0.x"j /idR; �y.�
"
j '/ � �

"
j '�;

Sk;3 WD

kX
iD1

CkC1;m.f; : : : ; f /Œf; : : : ; f„ ƒ‚ …
i�1

; �yf �f; �yf; : : : ; �yf; f �f
0.x"j /idR; �y.�

"
j '/�

C CkC1;m.f; : : : ; f /Œ�yf; : : : ; �yf; �yf � f; �y.�
"
j '/�

�

mX
iD1

C ikC3;mC1Œ�yf; : : : ; �yf; �yf � f
0.x"j /idR; �yf C f; �yf � f; �y.�

"
j '/�

and
C ikC3;mC1 WD CkC3;mC1.f; : : : ; f„ ƒ‚ …

i

; �yf; : : : ; �yf /:
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Lemma A.1 (ii) (with r D r 0) yields

kSk;1k2 � Kk�y�
"
j � �

"
j k2k'kHr 0�1 :

To estimate Sk;2, we consider two cases. If jyj > ", we use Lemma A.1 (i) and obtain

kSk;2k2 � Kk'k2:

If jyj � ", we use (B.5), which gives

kSk;2k2 � .�=C1/k�y.�
"
j '/ � �

"
j 'k2;

provided that " 2 .0; 1/ is small enough, with a positive constant C1 which we fix below.
Finally, Lemma A.1 (ii) (with r D r 0) produces

k�"jSk;3k2 � Kk�yf
0
� f 0k2k'kHr 0�1 :

Combining the above estimates, we have

ŒSk �Wr�1;2 � .�=C1/k�
"
j 'kHr�1 CKk'kHr 0�1 : (B.14)

It is now obvious that all the terms on the right-hand side of (B.13) can be estimated by
the right-hand side of (B.14), provided that " 2 .0; 1/ is sufficiently small. From (B.12)–
(B.14), we then deduce, after choosing C1 WD 3CC0.nC 2m/.1C kabk1/, that is,

kT4;2kHr�1 � C.kT4;2k2 C ŒT4;2�Wr�1;2/

�
CC0.nC 2m/�

C1
k�"j 'kHr�1 CKk'kHr 0�1

�
�

3.1C kabk1/
k�"j 'kHr�1 CKk'kHr 0�1 ;

and together with (B.11), we get

k.ab/.x"j /T4kHr�1 � .�=3/k�
"
j 'kHr�1 CKk'kHr 0�1 : (B.15)

Gathering (B.8)-(B.10) and (B.15), we obtain (B.4), and the proof is complete.

C. The behavior of the pressure and velocity near the interface and in
the far-field

In this section we consider the function .v˙; q˙/ defined in (2.12)–(2.13) and prove, under
the assumptions in Theorem 2.2, that .v˙; q˙/ satisfies the boundary conditions (2.1)3�4,
as well as the far field boundary condition (2.1)5, see Lemmas C.6 and C.4 below.
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Thus, in this section, we fix f 2 H3.S/ and use the notation introduced in Section 2.
Some additional notation is also needed. Given a function w W .S � R/ n � ! R, we set
w˙ WD w

ˇ̌
�˙

and denote by

¹wº˙ ı„.�/ WD lim
�˙3x!.�;f .�//

w.x/; � 2 S;

the one-sided limits ofw in„.�/, whenever these limits exist. Conversely, given functions
w˙ W �˙ ! R, we set

w WD 1�CwC C 1��w�;

which is viewed as a function defined almost everywhere in S � R. Moreover, since the
gradient rv˙ is determined by simply differentiating under the integral sign in (2.13)
(see the proof of Theorem 2.2), we need to calculate the first order partial derivatives of
U. From formula (2.8) we infer, that, for given x 2 .S �R/ n ¹0º, they are given by the
following expressions:

@1U
1>.x/ D

1

8�

0BB@
tŒx1�.1�T

2
Œx2�

/

t2
Œx1�
CT 2

Œx2�

� x2
tŒx1�TŒx2�.1Ct

2
Œx1�

/.1�T 2
Œx2�

/

.t2
Œx1�
CT 2

Œx2�
/2

x2
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.1Ct2
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/.1�T 2
Œx2�
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Œx1�
�T 2

Œx2�
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Œx2�
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1
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/
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Œx2�

C
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Œx2�
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/

t2
Œx1�
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Œx2�

C x2
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/
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�
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(C.1)

This motivates us to establish first the following preparatory result.

Lemma C.1. Given ' 2 L2.S/, let Zn.f /Œ'� W .S �R/ n � ! R, 1 � n � 6, be defined
by

Z1.f /Œ'�.x/ WD
1

2�

Z �

��

tŒr1�
�
1 � T 2

Œr2�

�
t2
Œr1�
C T 2

Œr2�

'.s/ ds;
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Z2.f /Œ'�.x/ WD
1

2�

Z �

��

TŒr2�
�
1C t2

Œr1�

�
t2
Œr1�
C T 2

Œr2�

'.s/ ds;

Z3.f /Œ'�.x/ WD
1

2�

Z �

��

r2

2

�
1C t2

Œr1�

��
1 � T 2

Œr2�

��
t2
Œr1�
� T 2

Œr2�

��
t2
Œr1�
C T 2

Œr2�

�2 '.s/ ds;

Z4.f /Œ'�.x/ WD
1

2�

Z �

��

r2

2

tŒr1�TŒr2�
�
1C t2

Œr1�

��
1 � T 2

Œr2�

��
t2
Œr1�
C T 2

Œr2�

�2 '.s/ ds;

Z5.f /Œ'�.x/ WD
1

2�

Z �

��

r2
tŒr1�

�
1 � T 2

Œr2�

�
t2
Œr1�
C T 2

Œr2�

'.s/ ds;

Z6.f /Œ'�.x/ WD
1

2�

Z �

��

r2
TŒr2�

�
1C t2

Œr1�

�
t2
Œr1�
C T 2

Œr2�

'.s/ ds; (C.2)

where r D .r1; r2/ is defined by

r WD r.x; s/ WD x � .s; f .s//; x 2 �˙; s 2 R: (C.3)

We set
Bn.f /Œ'�.�/ WD PV

�
Zn.f /Œ'�.„.�//

�
; 1 � n � 6; � 2 S: (C.4)

Then, Zn.f /Œ'�˙ 2 C1.�˙/, 1 � n � 6, and Zn.f /Œ'� 2 C.S �R/, n D 5; 6, with

¹Zn.f /Œ'�º
˙
ı„ D Bn.f /Œ'�; n D 5; 6: (C.5)

Moreover, if additionally ' 2 H1.S/, then Zn.f /Œ'�˙ 2 C.�˙/, 1 � n � 4, and8̂̂̂̂
<̂
ˆ̂̂:
0BBBB@
Z1.f /Œ'�

Z2.f /Œ'�

Z3.f /Œ'�

Z4.f /Œ'�

1CCCCA
9>>>>=>>>>;
˙

ı„ D

0BBBB@
B1.f /Œ'�

B2.f /Œ'�

B3.f /Œ'�

B4.f /Œ'�

1CCCCA˙ 1

!2

0BBBBB@
�f 0

1

�
2f 02

!2

f 0�f 03

2!2

1CCCCCA': (C.6)

Related to the definition (C.4), we observe that we may evaluate the integrals (C.2) at
„.�/ with � 2 S, provided that we interpret some of the integrals as being singular, see
Lemmas A.2 and A.3, since the operators Bn.f /, 1 � n � 6, can be represented as linear
combinations of the operators Bp;qn;m.f /, n;m; p; q 2 N0, 1 � p � nC q C 1, defined in
(3.5), see (3.9). In fact, Lemma A.2 ensures that Bn.f /Œ'� 2 C.S/, n D 5; 6, while, for
' 2 H1.S/, we also have Bn.f /Œ'� 2 C.S/, 1 � n � 4, cf. Lemmas A.2 and A.4.

Proof of Lemma C.1. Arguing as in the proof of Theorem 2.2, it immediately follows that
the function Zn.f /Œ'�˙ belongs to C1.�˙/ for 1 � n � 6. Moreover, Lebesgue’s dom-
inated convergence theorem leads to

¹Zn.f /Œ'�º
˙
ı„ D Bn.f /Œ'� 2 C.S/; n D 5; 6;

so that Zn.f /Œ'� 2 C.S �R/ for n D 5; 6. This proves (C.5).
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In the remaining, we assume that ' 2 H1.S/. Since Bn.f / 2 C.S/, nD 1; 2, together
with [26, Lemma 2.2], we conclude that Zn.f /Œ'�˙ 2 C.�˙/ for n D 1; 2, with

¹Z1.f /Œ'�º
˙
ı„ D B1.f /Œ'��

f 0

!2
';

¹Z2.f /Œ'�º
˙
ı„ D B2.f /Œ'�˙

1

!2
':

(C.7)

In order to derive similar properties for Zn.f /Œ'�, n D 3; 4; we use integration by parts
to deduce that

Z5.f /Œ'
0� D Z1.f /Œf

0'� �Z3.f /Œ'� � 2Z4.f /Œf
0'�;

Z6.f /Œ'
0� D Z2.f /Œf

0'�CZ3.f /Œf
0'� � 2Z4.f /Œ'�

µ
in .S �R/ n �;

respectively,

B5.f /Œ'
0� D B1.f /Œf

0'� � B3.f /Œ'� � 2B4.f /Œf
0'�;

B6.f /Œ'
0� D B2.f /Œf

0'�C B3.f /Œf
0'� � 2B4.f /Œ'�

µ
in C.S/:

SinceZn.f /Œ'0� 2 C.S �R/, nD 5; 6, the latter formulas combined with (C.5) and (C.7)
(with ' replaced by f 0') yield

¹Z3.f /Œ'�C 2Z4.f /Œf
0'�º˙ ı„ D B3.f /Œ'�C 2B4.f /Œf

0'��
f 02

!2
';

¹Z3.f /Œf
0'� � 2Z4.f /Œ'�º

˙
ı„ D B3.f /Œf

0'� � 2B4.f /Œ'��
f 0

!2
':

(C.8)

We now replace ' by '=!2 in (C.8)1 and by .f 0'/=!2 in (C.8)2 to obtain, after taking
the sum of the two relations, that

¹Z3.f /Œ'�º
˙
ı„ D B3.f /Œ'��

2f 02

!4
';

¹Z4.f /Œ'�º
˙
ı„ D B4.f /Œ'�˙

f 0 � f 03

2!4
';

(C.9)

with (C.9)2 being a direct consequence of (C.9)1 and (C.8)2. This proves (C.6) and com-
pletes the proof.

As a further preparatory result, we establish the following lemma which is related to
the logarithmic term in U, see (2.5) and (2.8).

Lemma C.2. Given ' 2 L2.S/, let Z0.f /Œ'� W .S �R/ n � ! R be given by

Z0.f /Œ'�.x/ WD
1

2�

Z �

��

ln
�

sin2
�r1
2

�
C sinh2

�r2
2

��
'.s/ ds: (C.10)

Then, Z0.f /Œ'� 2 C1..S � R/ n �/ and r
�
Z0.f /Œ'�

�
D .Z1.f /Œ'�; Z2.f /Œ'�/. Addi-

tionally, if ' 2 H1.S/; we have Z0.f /Œ'� 2 C.S � R/ and Z0.f /Œ'�˙ 2 C1.�˙;R2/,
with

¹Z0.f /Œ'�º
˙
ı„ D B0.f /Œ'�; (C.11)
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where

B0.f /Œ'�.�/ WD
1

2�

Z �

��

ln
�

sin2.s=2/C sinh2.ıŒ�;s�f=2/
�
'.� � s/ ds; � 2 S: (C.12)

Proof. Arguing as in the proof of Theorem 2.2, we obtain that Z0.f /Œ'�˙ 2 C1.�˙/,
with gradient

r.Z0.f /Œ'�
�
D .Z1.f /Œ'�; Z2.f /Œ'�/:

Since Zn.f /Œ'�˙ 2 C1.�˙/, n D 1; 2, for ' 2 H1.S/, cf. Lemma C.1, we deduce that
Z0.f /Œ'�

˙ 2 C1.�˙; R2/. Additionally, Lebesgue’s dominated convergence theorem
ensures that both one-sided limits of Z0.f /Œ'� in „.�/ exist for all � 2 S and coincide
with B0.f /Œ'�.�/ (which exists as an improper integral). This proves (C.11) and the con-
tinuity property Z0.f /Œ'� 2 C.S �R/.

Related to the asymptotic behavior of the operators defined above, we establish the
following lemma.

Lemma C.3. Given ' 2 L2.S/ for x2 !˙1, we have

Z5.f /Œ'�
˙
! 0; (C.13)

Z6.f /Œ'�
˙
� x2h'i ! �hf 'i; (C.14)

Z0.f /Œ'�
˙
� x2h'i ! �hf 'i � h'i ln 4: (C.15)

Proof. The property (C.13) is a simple consequence of Lebesgue’s dominated conver-
gence theorem, which implies, via

Z6.f /Œ'�
˙.x/� x2h'i ˙ hf 'i D

1

2�

Z �

��

r2.1� TŒr2�/
TŒr2� � t

2
Œr1�

t2
Œr1�
C T 2

Œr2�

'.s/ ds; x 2 �˙;

also (C.14). Finally, with respect to (C.15), we note that since

�
1

2�

Z �

��

ln.4�1er2/' ds D hf 'i C .˙ ln 4 � x2/h'i; x 2 �˙;

Lebesgue’s dominated convergence theorem yields

Z0.f /Œ'�
˙.x/˙

�
hf 'i C .˙ ln 4 � x2/h'i

�
D

1

2�

Z �

��

�
ln
�

sin2
�r1
2

�
C
er2 � 2C e�r2

4

�
� ln.4�1er2/

�
'.s/ ds

D
1

2�

Z �

��

ln
�
4e�r2 sin2

�r1
2

�
C e�2r2 � 2e�r2 C 1

�
'.s/ ds ������!

x2!˙1
0:

We are now in a position to study the behavior of the velocity v defined in (2.12)–
(2.13) close to the interface and in the far field (under the assumptions of Theorem 2.2).
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Lemma C.4. We have v 2 C.S �R;R2/, v˙ 2 C1.�˙;R2/, and

�
�
Œrv C .rv/>�z�

�
ı„ D !�1.G � �/� on S; (C.16)

v˙.x/!
�
�
hf G1i

2�
; 0
�

for x2 !˙1: (C.17)

Proof. Recalling (2.13), we write

vG D
1

4�

�
.Z0.f /CZ6.f //ŒG1� �Z5.f /ŒG2�

.Z0.f / �Z6.f //ŒG2� �Z5.f /ŒG1�

�>
in .S �R/ n �; (C.18)

and Lemmas C.1 and C.2 ensure that indeed vG 2 C.S �R;R2/ and

®
vG
¯˙
ı„ D

1

4�

 
.B0.f /C B6.f //ŒG1� � B5.f /ŒG2�

.B0.f / � B6.f //ŒG2� � B5.f /ŒG1�

!>
: (C.19)

Noticing also that

r.Z5.f /Œ'�/ D .�Z3.f /Œ'�; Z1.f /Œ'� � 2Z4.f /Œ'�/

r.Z6.f /Œ'�/ D .�2Z4.f /Œ'�; Z2.f /Œ'�CZ3.f /Œ'�/

µ
in S �R n �;

we infer from Lemmas C.1 and C.2 that v˙G 2 C1.�˙;R2/ and the formula (C.6) leads us
to

ŒrvG � ı„ D

�
@1vG;1 @2vG;1
@1vG;2 @2vG;2

�
ı„ D

G � �

�!3

�
�f 0 1

�f 02 f 0

�
;

hence,
�
�
ŒrvG C .rvG/

>�z�
�
ı„ D !�1.G � �/�;

and (C.16) follows.
Moreover, in view of Lemma C.3, we have

v˙G .x/!

�
�
hf G1i

2�
;�
hG2i ln 4
4�

�
for x2 !˙1;

which proves (C.17).

The following observation, together with (C.19), is used when formulating the Stokes
problem (1.1) as an evolution problem for f , as it provides an expression for the trace
of vG on � , in the particular case when G D F 0 for some function F D .F1; F2/, which
involves the function F (and not its derivative), see (C.21) below.

Remark C.5. Assume that G D F 0 for some function F D .F1; F2/ 2 H2.S/. Then,
observing that Œs 7! U.x � .s; f .s///� W S! R2�2 is continuously differentiable, inte-
gration by parts in (2.13) leads to the following representation:

v˙G .x/ D
1

�

Z �

��

F.s/

�
@1

�
U1

U2

�
.r/C f 0.s/@2

�
U1

U2

�
.r/

�
ds; x 2 �˙: (C.20)
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In view of (C.1) and (C.2), we conclude from Lemma C.1 that

¹vGº
˙
ı„

D
1

4�

 �
B1 � 2B4

�
.f /ŒF1 � f

0F2�C
�
2B2 C B3/.f /Œf

0F1�C B3.f /ŒF2�

B1.f /ŒF2 � f
0F1�C B3.f /ŒF1 � f

0F2�C 2B4.f /Œf
0F1 C F2�;

!>
:

(C.21)

Finally, we consider the pressure q.

Lemma C.6. We have q˙ 2 C.�˙/ and

Œq� ı„ D �!�1G � � on S;

q˙.x/!�
hG2i

2
for x2 !˙1:

Proof. Since

qG D �
Z1.f /ŒG1�CZ2.f /ŒG2�

2
;

Lemma C.1 yields q˙ 2C1.�˙/ together with ŒqG � ı„D�!�1G � �. Moreover, a simple
application of Lebesgue’s dominated convergence theorem shows that

q˙.x/!�
hG2i

2
for x2 !˙1;

which completes the proof.
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