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Unique continuation for differential inclusions

Guido De Philippis, André Guerra, and Riccardo Tione

Abstract. We consider the following question arising in the theory of differential inclusions: Given
an elliptic set � and a Sobolev map u whose gradient lies in the quasiconformal envelope of �
and touches � on a set of positive measure, must u be affine? We answer this question positively
for a suitable notion of ellipticity, which for instance encompasses the case where � � R2�2 is an
elliptic, smooth, closed curve. More precisely, we prove that the distance of Du to � satisfies the
strong unique continuation property. As a by-product, we obtain new results for non-linear Beltrami
equations and recover known results for the reduced Beltrami equation and the Monge–Ampère
equation: concerning the latter, we obtain a new proof of theW 2;1C"-regularity for two-dimensional
solutions.

Dedicated to Luigi Ambrosio, on the occasion of his 60th anniversary

1. Introduction

Let � � Rn be a connected open set and consider a subset � � Rn�n. In this paper
we study solutions u 2 W 1;n

loc .�;R
n/ to the differential inclusion associated with the K-

quasiconformal envelope of � ,

Du.x/ 2 E� for a.e. x 2 �:

More precisely, and following [18, 31], for a fixed K 2 Œ1;1/ we consider the set

E� �
®
X 2 Rn�n W jA �X jn � K det.A �X/ 8A 2 �

¯
; (1.1)

where j � j denotes the operator norm. For brevity we will omitK from the definition of E� .

1.1. Main results

The question we answer in this paper is the following.

Question 1.1. Let � � Rn�n be an elliptic set. Suppose u 2 W 1;n
loc .�;R

n/ satisfies Du 2
E� a.e. in �. If j¹x 2 � W Du 2 �ºj > 0, is then u affine?
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Keywords: unique continuation, differential inclusions, quasiregular maps, Monge–Ampère equation.
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The heuristic reason why one would expect this question to have a positive answer
comes from the following observation. By definition of E� , a map u 2 W 1;n

loc .�;R
n/

satisfies Du 2 E� a.e. if and only if the map u � A is K-quasiregular for all A 2 �; see
Definition 2.1 below. Now, K-quasiregular maps enjoy strong rigidity properties: it is a
deep analytic fact, due to Reshetnyak, that if f is quasiregular and if det.Df / D 0 on
a set of positive measure, then f is constant [38]. In fact, this property of quasiregular
mappings is the most basic case covered by Question 1.1, as it corresponds to taking
� D ¹0º. It follows from this discussion that a non-affine map u having the properties
expressed in Question 1.1 must be such that

j¹x 2 � W Du 2 �ºj > 0; but j¹x 2 � W Du D Aºj D 0, 8A 2 �;

i.e. it must be quite pathological. We note, however, that the relatively low regularity
assumed on u is not an essential difficulty in Question 1.1: indeed, even if u is assumed
to be smooth, it seems to be a non-trivial task to rule out the pathological behavior just
described.

It is clear that, in order to answer Question 1.1, one needs to specify a notion of ellip-
ticity. Generally speaking, one could call a set � elliptic if (i) Lipschitz maps satisfying
Du 2 � a.e. are actually C 1;˛ , and if (ii) weakly convergent sequences of maps whose
gradients approach � actually converge strongly. This notion of ellipticity is, however,
too weak for our purposes. Instead, we will study sets � having the following stronger
property.

Definition 1.2. We say that a set � � Rn�n satisfies a rigidity estimate if there is a con-
stant C� > 0 such that, for all balls B � Rn and all v 2 W 1;n.B;Rn/, we have

inf
A2�

Z
1
2B

jDv � Ajn dx � C�

Z
B

dist.Dv; �/n dx: (1.2)

We will discuss this definition in more detail below, but for now let us observe that any
set � which satisfies (1.2) is very rigid: the only maps ' 2W 1;n

loc .�;R
n/ fulfilling D' 2 �

a.e. are affine. The prototype of a set � satisfying this condition is

� D SO.2/ �
®
A 2 R2�2 W ATA D Id; det.A/ > 0

¯
;

as first shown in [22]. This example is extremely important as it is related to the Burk-
holder function and quasiregular maps on one hand [8, 12, 42] and to the Monge–Ampère
equation on the other [1], the latter connection playing a key role in the present paper.
We refer the reader to [27, 32, 37, 43, 45, 47] for more results concerning elliptic and non-
elliptic differential inclusions. We would like in particular to highlight [7, 25] and [37,
Theorem 2.5], where the non-vanishing property of gradients of quasiregular maps plays
an important role in a rigidity problem for differential inclusions.

Our first main theorem provides a positive answer to Question 1.1, by asserting a
unique continuation principle for the distance function.
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Theorem 1.3. Let � � Rn�n satisfy a rigidity estimate. Let u 2 W 1;n
loc .�;R

n/ satisfy

Du 2 E� a.e. in �: (1.3)

Then either dist.Du; �/ > 0 a.e. in �, or dist.Du; �/ D 0 a.e. in �, in which case u is
affine.

In fact, we can show the following quantitative version of Theorem 1.3.

Theorem 1.4. Let � �Rn�n satisfy a rigidity estimate, let u 2W 1;n.�;Rn/ satisfy (1.3),
and take �0 b � open. Suppose that there is M > 0 such that

0 < M�1 �

Z
�0

dist.Du; �/n dx and
Z
�

jDujn dx �M: (1.4)

Then there exist " D ".n; �;M;K;�0/ > 0 and C D C.n; �;M;K;�0/ > 0 such thatZ
�0

dist.Du; �/�" dx � C: (1.5)

We now discuss applications of our results in specific examples, which in fact served
as motivation for thinking about Question 1.1 in the first place.

1.2. Elliptic curves and non-linear Beltrami equations

The following is the main example we will discuss in this subsection.

Example 1.5 (Elliptic curves). We say that � � R2�2 is a K-elliptic curve if it is the
image of a closed, smooth curve 
 W Œ0; 1�!R2�2 without self-intersections and satisfying

j
.t/ � 
.s/j2 � K det.
.t/ � 
.s//; 8s; t 2 Œ0; 1�:

Elliptic curves were first introduced in [44] in the study of rank-one convex hulls of
compact sets K � R2�2. The separation properties they provide then led to striking
achievements in the following years [18, 31]. More recently, it was shown in [33] that
elliptic curves satisfy a rigidity estimate, and thus our theorems apply in this setting.

For instance, it is easy to see that � D SO.2/ is a 1-elliptic curve. More generally, any
smooth curve � contained in the conformal plane CO.2/� span.SO.2// is elliptic. In this
case, a map u solves (1.3) if and only if it solves the non-linear Beltrami equation

@ Nzu D � dist.@zu; �/; k�k1 �
K � 1

K C 1
; (1.6)

for some Beltrami coefficient �. In (1.6) we use the usual Wirtinger derivatives, which
allow us to identify Du 2 R2�2 with .@zu; @ Nzu/ 2 C2; see Section 5 for further details.

Non-linear Beltrami equations, with general non-linearities, have been studied exten-
sively in recent years [2,3,5,6,10]. For equations with the structure in (1.6), Theorem 1.3
yields the following novel conclusion.
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Corollary 1.6 (Non-linear Beltrami equations). Let � � CO.2/ be a smooth Jordan curve
and let u 2W 1;2

loc .�;R
2/ be a non-affine solution to (1.6). Then dist.@zu;�/¤ 0 a.e. in�.

For general non-linear Beltrami equations, the analogue of Corollary 1.6 is known
only when K < 2 [3]. We can specialize Corollary 1.6 to the case � D span.Id/; strictly
speaking, this is not a closed curve, but the result holds true nonetheless. We then obtain
the following corollary.

Corollary 1.7 (Reduced Beltrami equation). Any solution u 2 W 1;2
loc .�;R

2/ to

@ Nzu D � Im.@zu/; k�k1 �
K � 1

K C 1
; (1.7)

is either affine or satisfies Im.@zu/ ¤ 0 a.e. in �.

Equation (1.7) is known as the reduced Beltrami equation, and one can reduce general
linear elliptic systems in the plane to it [9, §6]. Corollary 1.7 was first established in [28]
in the case where u is a global homeomorphism, and under the additional assumption that
k�kL1 < 1=2. Next, in [4], this last condition on k�kL1 was removed; see also [11].
The general case of Corollary 1.7, without any homeomorphicity assumptions, was finally
obtained in [30].

We note that although Corollary 1.7 is known from [30] the proof we present here is
much simpler. In [30], the author establishes a reverse Hölder inequality with increasing
supports for jIm.@zu/j, which implies that zeros of jIm.@zu/j have infinite order; the
author then performs a delicate analysis to rule out this possibility. In the proof of Theorem
1.3 we directly establish a reverse Hölder inequality with the same support, from which
the conclusion follows.

1.3. SO(2) and the Monge–Ampère equation

In Section 1.2 we discussed consequences of Theorem 1.3 for general elliptic curves.
We now specialize to the case � D SO.2/ and draw a connection to the Monge–Ampère
equation. For a general introduction to this equation, we refer the reader to [20].

If O � Rn denotes a convex set, we consider convex functions 'WO ! R such that´
��1 dx � �' � � dx;

' D 0 on @O;
(1.8)

where �' denotes the Monge–Ampère measure of ' and � > 1. We recall that, whenever
' 2 W 2;n, we have �' D det D2'. There is a unique convex solution to (1.8) and much
attention has been given to understanding whether this solution belongs to W 2;p

loc .O/ for
some p � 1. A first perturbative result was obtained in [13], see also [46], and then in [16]
it was shown that

' 2 W
2;1

loc .O/; (1.9)
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with a uniform modulus of equi-integrability of the second derivatives. This result was
then strengthened in [17, 41], where it was shown that

' 2 W
2;1C"

loc .O/; for some " > 0 independent of ': (1.10)

We also refer the reader to [40] for a global version of (1.10) in general domains.
We will focus here on the case n D 2. A crucial idea in our strategy, which was intro-

duced in [1], is to apply Minty’s correspondence between monotone maps and 1-Lipschitz
maps. Precisely, if ' is the convex solution of (1.8) when nD 2 then we consider the maps

ˆ1.w/ �
D'.w/ � w
p
2

and ˆ2.w/ �
D'.w/C w
p
2

:

Since ' is convex, ˆ2 is a homeomorphism. There are now two main points, both essen-
tially due to [1]. The first one, which we make precise in Lemma 6.3, is that if we set
v � ˆ1 ıˆ

�1
2 , where the bar denotes complex conjugation, then

Dv 2 ESO.2/ \ ¹A 2 R2�2 W jAj � 1º a.e. in � � ˆ�12 .O/I

here, the corresponding constant K from (1.1) is precisely K D �. The second point is
that

(1.9) when n D 2 ” j¹Dv 2 SO.2/ºj D 0:

It is easy to see that we cannot have dist.Dv;SO.2// D 0 a.e. in �, and thus Theorem 1.3
already gives a new proof of (1.9) when n D 2. In fact, as we show in Lemma 6.10, one
has the stronger relationship

jD2'.x/j ��
1

dist.Dv.ˆ2.x//;SO.2//
for a.e. x in �;

and so the higher integrability of D2' is linked precisely to the decay of the distance of
Dv to SO.2/. Thus, applying Theorem 1.4, we in fact recover (1.10) when n D 2.

Corollary 1.8. Let 'WO!R be the unique convex solution to (1.8). Then ' 2W 2;1C"
loc .O/

for some " D ".�/ > 0.

1.4. Non-examples

We conclude this introduction by briefly mentioning further examples of sets to which
either our theorems do not apply, or where they do apply but do not provide any informa-
tion.

Example 1.9 (Isometries and conformal maps). If � D SO.n/, then Liouville’s theorem
asserts that rotations are the only exact solutions v to Dv 2 � a.e. in�. Moreover, by [22],
SO.n/ satisfies a rigidity estimate (strictly speaking, in [22] the estimate is only stated in
L2, but see also [15, §2.4] for the Lp-estimate). However, if n � 3, then

SO.n/ \ ESO.n/ D ;;
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since for everyX 2 SO.n/ we can find some Y 2 SO.n/, Y ¤X , such that det.X � Y /D
0. Therefore, in this case, Question 1.1 becomes meaningless. The same of course holds
for any subset � of the conformal matrices CO.n/ � ¹A W A D tR; t � 0; R 2 SO.n/º
invariant under the natural SO.n/-action, such as

� D Œm;M�SO.n/ for 0 < m < M <1:

For such sets, rigidity estimates were shown in [19].

Example 1.10 (General elliptic linear spaces). If � � Rn�n is a linear subspace without
rank-one matrices, the rigidity estimate (1.2) may not hold, as solutions to Dv 2 � do not
need to be affine. For instance, with � D CO.2/, the differential inclusion Dv 2 � simply
says that v is a holomorphic function. It is also interesting to notice that ECO.2/ D CO.2/,
and hence our results would not give any new information anyway.

Outline

The paper is organized as follows. In Section 2 we will introduce the notation and the
general tools we will use in the paper, more precisely quasiregular mappings and Muck-
enhoupt weights. In Sections 3 and 4 we will show Theorems 1.3 and 1.4 respectively.
In Section 5 we will see how Corollary 1.7 follows from Theorem 1.3. In Section 6 we
review some useful results on the Monge–Ampère equation, and show how Corollary 1.8
follows from Theorem 1.4. Finally, we included an appendix which contains the proof of
a technical result concerning Muckenhoupt weights.

2. Preliminaries and notation

Throughout the paper, .a;b/ denotes the standard scalar product between vectors a;b 2Rn

and hA;Bi the Hilbert–Schmidt scalar product between matrices A;B 2Rn�m. Similarly,
the Euclidean norm of vectors a 2 Rn is denoted by jaj and the operator norm of matrices
A 2 Rn�m is denoted by jAj. If A 2 Rn�n, then det.A/, tr.A/, and AT denote its deter-
minant, trace, and transpose respectively. The space of symmetric matrices in Rn�n is
denoted by Sym.n/ and, for A 2 Sym.n/, we let cof.A/ be the matrix defined as

cof.A/ij D .�1/iCj det.Mij .A// D .�1/
iCj det.Mj i .A//;

whereMij .A/ denotes the .n� 1/� .n� 1/ submatrix of A obtained by eliminating from
A the i th row and the j th column. In particular, cof.A/ satisfies

A cof.A/ D cof.A/A D det.A/Id:

For a (Lebesgue) measurable set E, jEj denotes its Lebesgue measure. For any set
D � Rn, xD denotes its closure and @D its topological boundary. We denote by Br .x/ the
ball of Rn centered at x with radius r > 0. IfB DBr .x/ for some r , x, then �B �B�r .x/
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for any � > 0. We will always use � � Rn to denote an open, non-empty, connected set.
Furthermore, for another open set �0, �0 b � means that �0 � �.

Given a set E with 0 < jEj < C1 and f 2 L1loc.R
n/, we let−

E

f dx �
1

jEj

Z
E

f dx

be the average of f over E.
Given positive functions h and g, we will sometimes use the notation h. g to say that

there exists C > 0 such that h � Cg. Analogously, h � g means h . g . h. If we want
to make the dependence of the constants explicit on some parameters a, b, etc., we will
write .a;b and �a;b .

2.1. Quasiregular mappings

We recall that a map f 2 W 1;n
loc .�;R

n/ is said to be K-quasiregular if it satisfies the
distortion inequality

jDf .x/jn � K det Df .x/ for a.e. x 2 �: (2.1)

A quasiregular homeomorphism is said to be quasiconformal. Quasiregular maps are
a far-reaching generalization of holomorphic functions, and we refer the reader to the
monographs [29, 38, 39] for a wealth of information on the topic. We will now recall the
main definitions and results from this theory that we will need in the proofs of Theorems
1.3–1.4.

The following deep topological result is essentially due to Reshetnyak; see e.g. [38]
or [29, Theorem 16.12.1].

Theorem 2.1. Any K-quasiregular map f 2 W 1;n
loc .�;R

n/ is continuous, with modulus
of continuity over�0 b � depending only onK and on kDf kLn.�0;Rn/. Moreover, if f is
non-constant then it is open and discrete.

Given a continuous map f W�! Rn and a set �0 b �, we write

N.f;�0; y/ � #.f �1.y/ \�0/; N.f;�0/ � sup
y2Rn

N.f;�0; y/: (2.2)

For a discrete and open continuous map (in particular, for a quasiregular map), the latter
quantity is locally bounded [39, I. Proposition 4.10(3)].

Lemma 2.2 (Bounded multiplicity). Let f 2C 0.�;Rn/ be a discrete and open mapping.
For any �0 b � we have N.f;�0/ <1.

We now move towards more analytic results. The next lemma, which is due to Martio
[34], gives a fundamental analytic property of the derivatives of quasiregular maps. This
result was extended to mappings of finite distortion in [26]. In the quasiconformal case
the lemma is a classical result of Gehring [23].
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Lemma 2.3 (Reverse Hölder inequality). Let f 2 W 1;n
loc .�;R

n/ be a K-quasiregular
map. For all balls with 2B � �, we have�−

B

jDf jn
� 1
n

dx � C.n;K;N.f;�//
−
B

jDf j dx:

Here, C.n;K;N.f;�// D C1 if N.f;�/ D C1.

Roughly speaking, Lemma 2.3 shows that, whenever f is quasiregular, jDf jn is an
A1 weight [24, Section 9.3]. More precisely, the lemma asserts that jDf jn 2 A1;loc, a
space that we will introduce in Section 2.2 below. It is well known that such weights are
doubling.

Lemma 2.4 (Doubling property). Let f 2 W 1;n
loc .�;R

n/ be a K-quasiregular map. For
all balls B with 2B � �, we haveZ

B

jDf jn dx � C.n;K;N.f;�//
Z
1
2B

jDf jn dx:

Here, C.n;K;N.f;�// D C1 if N.f;�/ D C1.

The reader should compare this lemma with [26, Lemma 5.2], also using Lemma 2.2.

2.2. Muckenhoupt weights

Besides quasiregular maps, for the proof of Theorem 1.4 we will also require a basic result
concerning Muckenhoupt weights. We start by giving the definitions of Ap;loc.�/ and
A1;loc.�/ weights, which are based on the definition of the classical Ap.Rn/, A1.Rn/
weights. We set, for any t � 1,

Bt .�/ � ¹B W B is a ball with tB � �º:

We then introduce the following local definition.

Definition 2.5. Let p > 1 and w 2 L1loc.�/. We say that w 2 A1;loc.�/ if it satisfies a
reverse Hölder inequality: there exist t; 
; C > 0 such that, for all B 2 Bt .�/,�−

B

w1C
 .x/ dx
� 1
1C


� C

−
B

w.x/ dx: (2.3)

Moreover, we say that w 2 Ap;loc.�/ if w > 0 a.e. on � and, for some t > 0,

sup
B2Bt .�/

�−
B

w.x/ dx
��−

B

w
� 1
p�1 .x/ dx

�p�1
< C1:
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In the sequel, we will use the following general result concerning the relation between
A1;loc.�/ and Ap;loc.�/ weights.

Theorem 2.6 (Ap weights). Letw 2A1;loc.�/ and let ";C > 0 be the constants for which
(2.3) holds for balls in Bt .�/. Then either w D 0, or w > 0 a.e. in � and w 2 Ap;loc.�/

for some p <1. In the latter case, there exist c > 0 and " > 0 depending only on n, 
 ,
and C such that −

B

w�" dx � c
�−

B

w.x/ dx
��"

; (2.4)

for all balls B 2 B16t .�/.

Theorem 2.6 is well known but, since we could not find a precise reference for it in our
local setting, for the sake of completeness we provide a proof in the appendix. However,
the proof is almost identical to the standard one in the usual global context of Ap and A1
weights, as in [24, Theorem 9.3.3].

3. A unique continuation principle for the distance function

In this section we prove Theorem 1.3. The main point of the proof is to show that, for a
solution u 2 W 1;n

loc .�;R
n/ of (1.3), the distance function dist.Du; �/ satisfies a reverse

Hölder inequality with non-increasing supports.

3.1. Proof of Theorem 1.3

Let us fix a set �0 b � and some small ı > 0. We claim that there is a positive constant
C D C.u; n; �;K;�0/ such that�−

B

dist.Du; �/nCı dx
� 1
nCı

� C

�−
B

dist.Du; �/n dx
� 1
n

(3.1)

for all balls B with 2B � �0. Once this is shown, the conclusion follows by applying the
principle of unique continuation for functions satisfying reverse Hölder inequalities (see
[29, Lemma 14.5.1]), or instead simply Theorem 2.6 above, which asserts that any such
function which vanishes on a set of positive measure must vanish identically.

In order to prove (3.1), let A 2 � be any matrix, and let '.x/ � Ax. We want to
apply Lemma 2.3 to the K-quasiregular map f � u � ', which we may assume to be
non-constant, as otherwise there is nothing to prove. Note that, by Gehring’s lemma [23,
Lemma 3], Lemma 2.3 yields the improved estimate�−

B

jDf jnCı dx
� 1
nCı

� C.n;K;N.f;�0//

−
B

jDf j dx; (3.2)
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for some small ı D ı.n;K;N.f;�0// > 0. Using this estimate, we have−
B

dist.Du; �/nCı dx �
−
B

jD.u � '/jnCı dx

(3.2)
� C.n;K;N.u � ';�0//

�−
B

jD.u � '/j dx
�nCı

� C.n;K;N.u � ';�0//

�−
B

jD.u � '/jn dx
� nCı

n

;

where the last inequality is just Hölder’s inequality. Thus, applying Lemma 2.4 to the
quasiregular map f , we arrive at�−

B

dist.Du; �/nCı dx
� 1
nCı

� C.n;K;N.u � ';�0//

�−
1
2B

jD.u � '/jn dx
� 1
n

: (3.3)

Since we assume that � satisfies the rigidity estimate (see Definition 1.2), we can choose
A 2 � such that−

1
2B

jD.u � '/jn dx D
−
1
2B

jDu � Ajn dx � C�

−
B

dist.Du; �/n dx: (3.4)

Thus the desired estimate (3.1) follows from Lemma 2.2, since N.f;�0/ <1.

4. A quantitative unique continuation principle

In this section we explain how a refinement of the proof in the previous section in fact
leads to the stronger result in Theorem 1.4.

4.1. A uniform bound on the multiplicity

The main result of this subsection is Proposition 4.1, which gives a quantitative improve-
ment over Lemma 2.2 above. In order to state it, let us introduce some notation. For any
open set �0 b �, we consider for M > 0 the class of maps

XM .�
0; �/ �

®
u 2 W 1;n.�;Rn/ W u satisfies (1.3) and (1.4)

¯
:

We will use the short-hand notation XM for XM .�0; �/.

Proposition 4.1 (Uniform multiplicity bounds). Let�� Rn be open and let�0 b�. Let
� � Rn�n satisfy a rigidity estimate. Then there is C D C.n;K; �;M;�0/ > 0 such that

N.u � ';�0/ � C

for all u 2 XM and all linear maps '.x/ � Ax for A 2 � .
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To prove this result, we begin with the following simple lemma.

Lemma 4.2. Let .fj / � W
1;n

loc .�;R
n/ be a sequence of K-quasiregular maps and let

c 2 Rn be a constant. Then

fj * c in W 1;n
loc .�;R

n/ H) fj ! c in W 1;n
loc .�;R

n/:

Proof. The claim follows from [36, Corollary 1.2] and the distortion inequality (2.1).

We will also use the following topological result, which asserts that for discrete, open
maps the supremum in (2.2) can be replaced with the essential supremum.

Lemma 4.3. Let f W�!Rn be continuous, open, and discrete with kN.f;�; �/kL1.f .�//
<1. Then N.f;�/ D kN.f;�; �/kL1.f .�//.

Proof. Let us write N � kN.f;�; �/kL1.f .�// � N.f;�/. Assume by contradiction that
N.f; �; y/ � N C 1 for some y 2 f .�/, so let ¹x1; : : : ; xNC1º be pre-images of y
through f . We can find r > 0 sufficiently small such that Br .xi / \ Br .xj / D ; for all
i ¤ j . Since f is an open mapping, the set

U �

NC1\
iD1

f .Br .xi //

is itself open. Thus, for a.e. Qy in U we have N.f;�; Qy/ � N . But this is a contradiction,
since each point in U has at least N C 1 pre-images by construction.

Notice that the fact that this lemma applies in our setting is due to Theorem 2.1.
Finally, we show the following lemma, which represents a counterpart to Lemma 4.2 in
the case the limit map is non-constant.

Lemma 4.4. Let .fj /�W 1;n.�;Rn/ be a sequence ofK-quasiregular maps converging
weakly in W 1;n to a non-constant K-quasiregular map f 2 W 1;n.�;Rn/. Then, for any
set �0 b �,

lim sup
j!1

N.fj ; �0/ < C1:

Proof. We let d.g; U; p/ be the Brouwer degree of a continuous function gWU ! Rn

with respect to the point p … g.@U /. We refer the reader to [21, Section 2] for the defi-
nition. As f is K-quasiregular and non-constant, Theorem 2.1 ensures that it is open and
discrete. We thus employ [35, Lemma 2.9, Corollary 2.10] to find a system of normal
neighborhoods for f in �, i.e. for all x 2 �, there exists r0 D r0.x/ > 0 and open sets
¹U.x; r/ºr�r0 with the following properties:

(1) limr!0 diam.U.x; r// D 0;

(2) for all r � r0, f .@U.x; r// D @.f .U.x; r///;

(3) for all 0 < r < s < r0, U.x; r/ � U.x; s/.



G. De Philippis, A. Guerra, and R. Tione 12

These neighborhoods actually enjoy many more properties, but these are sufficient for our
purposes. As�0 is a compact set inside�, we can find finitely many points x1; : : : ;x` 2�0

and positive numbers r1; : : : ; r` such that

�0 �
[̀
iD1

U
�
xi ;

ri

2

�
�

[̀
iD1

U.xi ; ri / b �:

Let Bi � U.xi ; ri2 / and Ai � U.xi ; ri /, for all i D 1; : : : ; `. Due to (2)–(3),

f .Bi / \ f .@Ai / D ;; 8i:

By the uniform convergence fj ! f on Ai , we thus find "i > 0 such that for all j 2 N
sufficiently large (depending on i ) and all y 2 f .Bi / [ fj .Bi /,

0 < "i � min¹dist.y; f .@Ai //; dist.y; fj .@Ai //º:

If j is sufficiently large, [21, Proposition 2.3 (i)] tells us that then for all such y,

d.fj ; Ai ; y/ D d.f;Ai ; y/: (4.1)

Now [21, Lemma 2.4 (i)–(ii)] imply that

d.fj ; Ai ; y/ D N.fj ; Ai ; y/ and d.f;Ai ; y/ D N.f;Ai ; y/ for a.e. y in Rn: (4.2)

Combining (4.1) and (4.2), we find that, for all j � ji , ji sufficiently large, and for almost
every y 2 f .Bi / [ fj .Bi /,

N.fj ; Ai ; y/ D N.f;Ai ; y/:

Due to Lemmas 2.2 and 4.3, we then find that for all y 2 f .Bi / [ fj .Bi /,

sup
j�ji

N.fj ; Bi ; y/ � sup
j�ji

N.fj ; Ai ; y/ � N.f;Ai /: (4.3)

Therefore, choosing j0 D max¹j1; : : : ; j`º, we can write for all y 2 fj .�0/ and j � j0,

N.fj ; �0; y/ �
X̀
iD1

N.fj ; Bi ; y/
(4.3)
� `

`
max
iD1

N.f;Ai / <1;

by Lemma 2.2. This concludes the proof.

We can finally give the proof of Proposition 4.1.

Proof of Proposition 4.1. We argue by contradiction: Let us assume that there is a
sequence of solutions uj 2 XM and of matrices Aj 2 � such that fj � uj � 'j satis-
fies N.fj ; �0/ � j , where 'j .x/ � Ajx are the induced linear maps. We now split the
proof into two cases.
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Case 1: We will not relabel subsequences. Assume there exists a subsequence of .Aj /j
which is equibounded. Then there exists a subsequence of .fj /j which is equibounded
in W 1;n.�;Rn/, since uj 2 XM for all j , and so fj * f in W 1;n.�;Rn/ up to a
subsequence. If f is constant, then we see that the convergence is actually strong in
W 1;n.�0;Rn/ by Lemma 4.2. But then

M�1 �

Z
�0

dist.Duj ; �/n dx �
Z
�0
jDuj � Aj jn dx D

Z
�0
jDfj jn dx ! 0; (4.4)

a contradiction. Therefore, the limit map f is non-constant. Furthermore, the weak con-
vergence of the Jacobians invoked in the proof of Lemma 4.2 implies that f is K-quasi-
regular as well (but see also [29, Theorem 8.10.1]). Moreover, due to Theorem 2.1, we
see that fj and f are continuous for all j and that .fj /j converges in the C 0 topology on
every compact set towards f . Theorem 2.1 tells us that the assumptions of Lemma 4.4 are
fulfilled, and we immediately reach a contradiction.

Case 2: Assume that lim infj!1 jAj j ! 1. We introduce the normalized maps

gj �
fj

jAj j
:

Up to non-relabeled subsequences, .gj /j is a sequence of K-quasiregular mappings
strongly converging inW 1;n.�;Rn/ to a linear map g.x/DBx for some jBj D 1. Indeed,
if we consider B D limj

Aj
jAj j

, then

kgj � gkW 1;n.�;Rn/ �




 uj
jAj j





W 1;n.�;Rn/

C




 'j
jAj j
� B





W 1;n.�;Rn/

�
M

1
n

jAj j
C




 'j
jAj j
� B





W 1;n.�;Rn/

:

As above, we find that g is quasiregular, since it is a limit of quasiregular mappings,
which simply means that det.B/ � KjBjn D K. In particular, g is a homeomorphism,
and Lemma 4.4 shows that N.gj ; �0/ is equibounded in j . However,

N.gj ; �
0/ D N.jAj jgj ; �

0/ D N.fj ; �
0/;

and we find a contradiction with N.fj ; �0/ � j for all j in this case as well.

4.2. Proof of Theorem 1.4

Let ı > 0. We can assume without loss of generality that �0 � ¹x 2 � W dist.x; @�/ > ıº
and U � ¹x 2 � W dist.x; @�/ > ı=2º, where we also assume ı to be sufficiently small
so that �0 and U are non-empty. With this choice, clearly �0 b U b �. We also let
w � dist.Du;�/n. The proof of Theorem 1.3 and in particular (3.1) shows the following:
there exist 
 , C such that�−

B

w1C
 dx
� 1
1C


� C

−
B

w dx; 8 balls B with 2B � U :
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In particular, 
 and C depend on ı. Indeed, they depend on ı (only) through the quantity
N.u � '; U / as can be seen from (3.2)–(3.3)–(3.4), where '.x/ D Ax for some A 2 � .
However, Proposition 4.1 (employed with U instead of �0) tells us that N.u � '; U / can
be bounded by a constant only depending on n, K, � , M , and U , which in turn only
depends on ı. Thus, Theorem 2.6 (employed with U instead of �) implies the existence
of " > 0 and c > 0, both depending on n, K, � , M , and ı such that−

B

w�".x/ dx � c
�−

B

w.x/ dx
��"

; (4.5)

for all balls B such that 32B � U . We define r0 � ı
128

. Notice that, with this choice, for
any x 2 �0, B32r0.x/ � U . If we manage to show that there exists a constant

c D c.n;K; �;M; ı/ > 0

such that for every u 2 XM and for every B D Br0.x/, x 2 �0, we haveZ
B

dist.Du; �/n dx � c > 0; (4.6)

then a simple covering argument that uses the compactness of �0 allows us to conclude
the bound (1.5) through (4.5).

The argument to show (4.6) is again by contradiction. Assume there exist uj 2 XM
and xj 2 �0 such that Z

Br0 .xj /

dist.Duj ; �/n dx � j�1:

Since � satisfies a rigidity estimate, we find matrices Aj 2 � such thatZ
Br0=2.xj /

jDuj � Aj jn dx � C�

Z
Br0 .xj /

dist.Duj ; �/n dx ! 0: (4.7)

Set fj � uj � 'j , where as before 'j .x/� Ajx. We can assume that xj ! x0. Moreover,
we have that .Aj /j is equibounded. Indeed, (4.7) implies

cnr
n
0 jAj j

n
�

Z
Br0=2.xj /

jAj j
n dx

� C

�Z
Br0 .xj /

dist.Duj ; �/n dx C
Z
�

jDuj jn dx
�
� C.1CM/;

where C D C.�; n;�/ > 0. Thus, up to non-relabeled subsequences, we can also assume
that fj * f inW 1;n

loc .�;R
n/. We will now show that f is a constant, which then yields a

contradiction exactly as in (4.4). To show that f is constant, we simply use (4.7) to deduce
thatZ
Br0=4.x0/

jDf jn dx � lim inf
j!1

Z
Br0=4.x0/

jDfj jn dx � lim inf
j!1

Z
Br0=2.xj /

jDfj jn dx
(4.7)
D 0:

Therefore, f is constant on an open subset of �. If it were non-constant on �, then f
would be open by Theorem 2.1, which is clearly impossible. This concludes the proof.
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5. Application to the non-linear Beltrami equation

The purpose of this short section is to prove Corollary 1.6, which we restate here for the
reader’s convenience.

Theorem 5.1. Let � �CO.2/ be aK-elliptic curve, and let u 2W 1;2
loc .�;C/ be a solution

to
@ Nzu D � dist.@zu; �/; k�kL1.�/ �

K � 1

K C 1
: (5.1)

Then either u is affine or dist.@zu; �/ ¤ 0 a.e. in �.

As we will see, Theorem 5.1 is a simple consequence of Theorem 1.3; we also note
that Theorem 1.4 provides an obvious quantitative version of Theorem 5.1, which we will
not state.

We start by recalling the definition of the Wirtinger derivatives. For f 2W 1;1.�;R2/,
which we write as f D .f1; f2/ in components, we set

@zf �
1

2
Œ.@1f1 C @2f2/C i.@1f2 � @2f1/�;

@ Nzf �
1

2
Œ.@1f1 � @2f2/C i.@1f2 C @2f1/�:

These derivatives allow us to identify Df 2 R2�2 with a pair .@zf; @ Nzf / 2 C2. We note
that this identification satisfies the rules

jDf j D j@zf j C j@ Nzf j; det Df D j@zf j2 � j@ Nzf j2: (5.2)

Theorem 5.1 is an immediate consequence of Theorem 1.3 and the following lemma.

Lemma 5.2. Let � � CO.2/ be aK-elliptic curve. A map u 2W 1;2
loc .�;R

2/ is a solution
to (5.1) if and only if Du 2 E� a.e. in �.

Proof. Let � D ¹
.t/ W t 2 Œ0; 1�º and set ut .z/� u.z/� 
.t/z. Using (5.2) and definition
(1.1), we see that for any z 2 � we have

Du.z/ 2 E� ” j@ Nz.ut .z//j �
K � 1

K C 1
j@z.ut .z//j 8t 2 Œ0; 1�:

Since � � CO.2/, we have @ Nzut D @ Nzu, and hence taking the infimum over t we see that

Du.z/ 2 E� ” j@ Nzu.z/j �
K � 1

K C 1
dist.@zu.z/; �/: (5.3)

Hence it is clear that any solution to (5.1) is a solution to the differential inclusion (1.3).
Conversely, given a solution to the differential inclusion, we obtain a solution to (5.1) by
setting �.z/� @ Nzu.z/

dist.@zu.z/;�/
if the denominator is non-zero and �.z/D 0 otherwise, which

satisfies the required bounds.
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Proof of Theorem 5.1. By [33], � satisfies a rigidity estimate. By the lemma, (5.1) can be
rewritten as the differential inclusion (1.3), and the conclusion follows from Theorem 1.3.

Note that the proof of Corollary 1.7 is exactly the same: in that case, we have � D
span.Id/ and it is straightforward to check that

dist.Du.z/; �/ D jIm.@zu.z//j C j@ Nzu.z/j D .1 � j�.z/j/jIm.@zu.z//j:

In this setting, in fact, one can avoid using the results from [33], since the needed rigidity
estimate is linear and is therefore a corollary of the classical Korn inequality, as used for
instance in [22, Step 3, Proposition 3.1].

6. Application to the Monge–Ampère equation

Let O � Rn be a convex set with B1.0/ � O � Bn.0/, and let 'WO ! R be the unique
convex function solving ´

��1 dx � �' � � dx;

' D 0 on @O;
(6.1)

where � � 1 and �' is the Monge–Ampère measure associated to '. For a given t > 0,
we consider the corresponding section

Zt �
®
x 2 O W '.x/ � �t�1k'kL1.O/

¯
:

The purpose of this section is to prove the following result.

Theorem 6.1. Let n D 2, let O be an open convex set satisfying B1 � O � B2, and let '
be the convex solution to (6.1). There are constants C; " > 0, depending only on �, such
that

kD2'kL1C".Z2/ � C: (6.2)

We note that Theorem 6.1, combined with standard covering arguments, yields Corol-
lary 1.8, just as in [17, Theorem 1.1].

6.1. Setup

We start by remarking that, to prove Theorem 6.1 and Corollary 1.8, it is sufficient to
prove an a priori W 2;1C"-estimate. Indeed, if we write �' D g dx with ��1 � g � � a.e.
in O , we can mollify g and solve the associated Monge–Ampère problem. The unique
solution we get at every step of the mollification is strictly convex by [20, Theorem 2.19]
and hence smooth due [20, Corollary 4.43]. Every smooth solution is also bounded a
priori in L1.O/ by [20, Theorem 2.8]. Due to the uniqueness of solutions to (6.1) (see
[20, Corollary 2.11]), the sequence of smooth solutions obtained in this way converges
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locally uniformly to the unique ' solving �' D g dx, which then inherits the a priori
estimates.

By the previous paragraph, we will now take g 2 C1.O; Œ��1; ��/ and assume that '
is the smooth, strictly convex solution to´

det D2' D g in O;

' D 0 on @O:
(6.3)

As described in the introduction, set

ˆ1.w/ �
D'.w/ � w
p
2

and ˆ2.w/ �
D'.w/C w
p
2

: (6.4)

The convexity of ' shows that ˆ2 is a homeomorphism of O onto� � ˆ2.O/ so we can
define, as in [1, equation (13)],

u.z/ � ˆ1 ıˆ
�1
2 .z/; 8z 2 �: (6.5)

This is the so-called Minty correspondence between monotone and 1-Lipschitz maps. For
solutions of (6.3) one can check the following; cf. [1, Proposition 4.2].

Lemma 6.2. Let A be the set of admissible gradients

A �
®
A 2 Sym.2/ W jAj � 1; j tr.A/j � ��1

�C1
.1C detA/

¯
: (6.6)

If ' solves (6.3) and u is as in (6.5), then

Du.z/ 2 A 8z 2 �: (6.7)

In particular, u is 1-Lipschitz.

The proof of [1, Proposition 4.2] is complicated by the fact that the maps there were
not assumed to be smooth. In the smooth setting that we consider here, Lemma 6.2 is
a straightforward calculation: indeed, it is easy to see that if D2'.w/ has eigenvalues
.�i .w//iD1;2, then Du.z/ is a symmetric matrix with eigenvalues . �i .z/�1

�i .z/C1
/iD1;2, where

z D ˆ�12 .w/. The conclusion then follows directly from (6.3). We refer the reader to
Lemma 6.10 below for a similar calculation.

In the rest of this section, we write

A0 �

�
1 0

0 �1

�
for the conjugation operator, and we consider the set of singular gradients

� �
®
M 2 O.2/ W det.M/ < 0

¯
D
®
RA0R

�1
W R 2 SO.2/

¯
:

As discussed in the introduction (for v D Nu instead of u), our main goal is to estimate the
decay of dist.Du; �/.
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The next lemma is a sharper version of the results of [1], in particular of [1, Lemma
7.2]. The main difference from their work is that we use the operator norm instead of the
Euclidean norm in the calculations.

Lemma 6.3. With K D �, the K-quasiconformal envelope of A0� D SO.2/ satisfies

A � A0ESO.2/ \ ¹M W jM j � 1º:

Proof. For simplicity, set k � K�1
KC1

. Let us first explicitly compute ESO.2/: by (5.3), we
have

ESO.2/ D
®
A 2 R2�2 W ja�j � k

ˇ̌
1 � jaCj

ˇ̌¯
;

where we identify A 2 R2�2 with .aC; a�/ 2 C2 as described in Section 5, i.e. through
A.z/ D aCz C a� Nz. We note the identities

tr.A/ D 2Re aC; detA D jaCj2 � ja�j2; jAj D jaCj C ja�j; (6.8)

together with the fact that A 2 Sym.2/ if and only if aC 2 R. In particular,

A0ESO.2/ D
®
A 2 R2�2 W jaCj � k

ˇ̌
1 � ja�j

ˇ̌¯
and, since jAj � 1 implies ja�j � 1 by (6.8),

A0ESO.2/ \ ¹M W jM j � 1º D
®
A 2 R2�2 W jaCj � k.1 � ja�j/

¯
:

From (6.6) with � D K and (6.8), we see that any A 2 A satisfies

2jaCj D j tr.A/j
(6.6)
� k.1C detA/

(6.8)
D k.1C jaCj

2
� ja�j

2/; jaCj C ja�j � 1:

Inverting this relation, we find

jaCj � k.1 � ja�j/
1C ja�j

2 � kjaCj
; jaCj C ja�j � 1: (6.9)

Due to the second condition in (6.9) and the fact that k < 1 we see that ja�j C kjaCj � 1
holds, which in turn implies

1C ja�j

2 � kjaCj
� 1:

This shows that any A 2 A satisfies jaCj � k.1 � ja�j/, and the conclusion follows.

6.2. Preliminary results on sections

Sections of convex functions play a key role in the regularity theory for the Monge–
Ampère equation. In Theorem 6.1 we assume that the convex domain O is normalized,
in the sense that B1 � O � B2, and so there are universal estimates on the behavior
of the solution. In particular, we have the following result, which the reader can find in
[20, Corollary 4.5].



Unique continuation for differential inclusions 19

Proposition 6.4. In the setting of Theorem 6.1, there is ı D ı.�/ > 0 with dist.Z2; @Z4/
� ı.

As an immediate consequence of Proposition 6.4 and convexity we obtain the follow-
ing result, which we state here as a lemma.

Lemma 6.5. There is c1 D c1.�/ > 0 such that dist.ˆ2.Z2/; @ˆ2.Z4// � c1.

Proof. By the Cauchy–Schwarz inequality and the convexity of ', for x; y 2 O we can
write

jˆ2.x/ �ˆ2.y/j jx � yj � .ˆ2.x/ �ˆ2.y/; x � y/

D
1
p
2

�
jx � yj2 C .D'.x/ � D'.y/; x � y/

�
�

1
p
2
jx � yj2:

Rearranging, we see that jˆ2.x/ � ˆ2.y/j � jx � yj=
p
2, and the conclusion follows

from Proposition 6.4.

The next result that we will need, and which is due to [14], gives a universal estimate
on the C 1;˛ norm of the solution. The reader can find a proof in [20, Theorem 4.20].

Theorem 6.6 (C 1;˛-regularity). In the setting of Theorem 6.1, there are universal con-
stants ˛; c > 0, which only depend on �, such that k'kC 1;˛.Z4/ � c.

In particular, recalling definition (6.4), we obtain the following corollary.

Corollary 6.7. Let B�.x/ � ˆ2.Z4/ and set �0 � c�1=˛�1=˛ . Then

B�0.y/ � ˆ
�1
2 .B�.x//; where y D ˆ�12 .x/:

The following lemma is an immediate application of Corollary 6.7.

Lemma 6.8. There is N D N.�/ such that ˆ2.Z2/ can be covered by N balls
.B�.xi //iD1;:::;N , with centers xi 2 ˆ2.Z2/ and radii � D c1=64.

Proof. Since Z2 � O � B2, we can find N D N.�/ and x1; : : : ; xN 2 ˆ2.Z2/ such that

Z2 �

N[
iD1

B�0.ˆ
�1
2 .xi //;

where �0 D c�1=˛�1=˛ , as in Corollary 6.7. In turn, that corollary implies that

ˆ2.Z2/ �

N[
iD1

ˆ2
�
B�0.ˆ

�1
2 .xi //

�
�

N[
iD1

B�.xi /;

which concludes the proof.
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6.3. Two elementary lemmas

In order to prove Theorem 6.1 we need two elementary but important lemmas, which
further display the connection between the Monge–Ampère equation and (6.7).

The first lemma will be used to precisely control the multiplicity of u � S for S 2 � .

Lemma 6.9. Let u be as in (6.5). Then u � S is a homeomorphism for all S 2 � .

Proof. Fix any S 2 � . By the invariance of domain theorem, it suffices to show that u� S
is injective on � for all S 2 � . From (6.5) we have, for all x 2 O ,

u
�x C D'.x/

p
2

�
D

D'.x/ � x
p
2

; (6.10)

where we recall that ' is a smooth, strictly convex solution to (6.3). Rewrite (6.10) as

.u � S/
�x C D'.x/

p
2

�
D

D'.x/ � x
p
2

� S
�x C D'.x/

p
2

�
: (6.11)

Since x C D'.x/ is a homeomorphism, (6.11) shows that u � S is injective if and only if

ˆ.x/ � D'.x/ � x � S.x C D'.x//

is injective. If we first let S D A0, we see that

ˆ.x/ D

�
�2x1
2@2'.x/

�
:

Thus, the injectivity ofˆ follows from the strict convexity of '. In the general case where
S does not have the form above, we can anyway find M 2 O.2/ such that

A0 DM
TSM:

In this case we define

‰.x/ �M Tˆ.Mx/;  .x/ � '.Mx/:

Then again  solves the Monge–Ampère equation (6.3), albeit with a different smooth
right-hand side g. Furthermore,

‰.x/ DM TŒD'.Mx/ �Mx � S.Mx C D'.Mx//�

DM TD'.Mx/ � x �M TSM.x CM TD'.Mx//

D D .x/ � x � A0.x C D .x//:

Hence, by the case where S D A0, we deduce that ‰ is injective. It follows that ˆ is
injective as well, which concludes the proof.

The next lemma links precisely the higher integrability of the solution to (6.3) with
the decay of the distance of u to � .



Unique continuation for differential inclusions 21

Lemma 6.10. Let ' be the solution of (6.3) and let u be as in (6.5). In O, we have

jD2'j �� dist�1.Du; �/ ıˆ2:

Proof. We start once again from (6.10) and we take its differential: we obtain

Du
�x C D'.x/

p
2

�
.IdC D2'.x// D D2'.x/ � Id: (6.12)

We set

X � Du
�x C D'.x/

p
2

�
and Y � D2'.x/:

By (6.3) we have
Y 2 SymC.2/; with ��1 � det.Y / � �: (6.13)

Furthermore, (6.12) can be rewritten as

X D .Y � Id/.Y C Id/�1 D
det.Y /IdC Y � cof.Y / � Id

det.Y C Id/
:

To prove the lemma, we can assume that Y is diagonal, i.e.

Y D

�
�1 0

0 �2

�
; with �1 � �2;

since the general case follows by a suitable conjugation byM 2 O.2/. Notice for later use
that, since �1 � �2, we have

0 � �2 �
p
�1�2 �

p
�; (6.14)

by (6.13). We can also compute

det.Y /IdC Y � cof.Y /� Id D
�
�1�2 C �1 � �2 � 1 0

0 �1�2 C �2 � �1 � 1

�
; (6.15)

and hence X is a diagonal matrix with elements x11 � x22, from which we deduce that
dist.X; �/ D jX � A0j. To see this, we can use complex notation as in Lemma 6.3: we
write xC and x� for the vectors such that Xz D xCz C x� Nz and we notice that matrices
in � can be identified with elements of .0; eit / 2 C2. After these observations, we write
using (6.8),

dist2.X; �/ D min
t2Œ0;2��

.jx� � e
it
j C jxCj/

2:

The minimum is achieved at the value t0 which minimizes f .t/´ jx� � eit j2 for t 2
Œ0; 2��. Noticing that X diagonal implies that x� is real, from f 0.t0/ D 0 we deduce
t0 D 0 or t0 D � . Since we also have x11 � x22, we get that t0 D 0, as wanted. It follows
that

dist.X; �/ D jX � A0j D
ˇ̌̌det.Y /IdC Y � cof.Y / � Id � A0 det.Y C Id/

det.Y C Id/

ˇ̌̌



G. De Philippis, A. Guerra, and R. Tione 22

and hence we only need to show thatˇ̌̌det.Y /IdC Y � cof.Y / � Id � A0 det.Y C Id/
det.Y C Id/

ˇ̌̌
�� jY j

�1 (6.16)

to conclude the proof of the lemma. Notice that, due to (6.13) and (6.14),

det.Y C Id/ D det.Y /C 1C tr.Y / D �1�2 C 1C �1 C �2 �� jY j:

Therefore, to show (6.16), it suffices to prove that

jdet.Y /IdC Y � cof.Y / � Id � A0 det.Y C Id/j �� 1: (6.17)

To prove this last claim, we return to (6.15) and we compute

det.Y /IdC Y � cof.Y / � Id � A0 det.Y C Id/ D
�
�2�2 � 2 0

0 2�1�2 C 2�2

�
:

The norm of this matrix is comparable to

�1�2 C �2 C 1;

which is clearly bounded from below by 1 and is bounded from above by �C
p
�C 1

due to (6.14). This concludes the proof of (6.17) and hence of the present lemma.

6.4. Proof of Theorem 6.1

Fix any q 2 Œ0;1/. Due to Lemma 6.10, we see thatZ
Z2

jD2'j1Cq.x/ dx .�
Z
Z2

jD2'j.x/ dist�q.Du; �/.ˆ2.x// dx:

We now change variables according to y D ˆ2.x/. Observe that

Dˆ2.x/ D
D2'.x/C Id
p
2

;

whence, for all points x 2 O , by (6.3),

det.Dˆ2.x// D
1

2
det.D2'.x/C Id/ �

1

2

�
1C tr.D2'.x//

�
�
jD2'.x/j

2
: (6.18)

Therefore, Z
Z2

jD2'j1Cq.x/ dx .�
Z
ˆ2.Z2/

dist�q.Du; �/.y/ dy: (6.19)

To complete the proof, we can exploit Theorem 1.4 and (6.19). However, it is possible
to avoid using Theorem 1.4, and in particular Proposition 4.1, and so for the sake of
simplicity we do so here.
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Combining Lemmas 6.2, 6.3, and 6.9, we see that the map u� S is �-quasiconformal
for all S 2 � , hence dist.Du;�/ > 0 a.e. in �. This also allows us to go back to the proof
of Theorem 1.3 and deduce that actually the constants do not depend on the multiplicity
N.u� ';ˆ2.Z4//, which is 1 for every choice of S (recall that, in that proof, '.x/D Sx).
In particular, in this setting, we can exploit Lemma 2.3 thus directly getting, for some
� D �.�/ > 0, �−

B

dist.Du; �/2C� dx
� 1
2C�

� C.�/

−
B

dist.Du; �/ dx;

for all balls B � � with 2B � �. Now we can use the same reasoning as in the proof
of Theorem 1.4, namely we can employ Theorem 2.6 to deduce the existence of "; c > 0
depending only on � and C , and hence ultimately depending only on �, such that−

B

dist�".Du; �/ dx � c
�−

B

dist.Du; �/ dx
��"

(6.20)

for all balls B 2 B32.�/.
Now we consider the balls Bi � B�.xi / given by Lemma 6.8, with � � c1=64. By

Lemma 6.5, we see that 32Bi � ˆ2.Z4/ � �, hence (6.20) holds for Bi in place of B .
In order to conclude the proof of (6.2), from (6.19) we see that we only need to show that
there exists a constant c2 D c2.�/ > 0 such thatZ

Bi

dist.Du; �/ dx � c2; 8i D 1; : : : ; N:

To prove this claim, it is enough to show that there exists a constant c2 D c2.�/ > 0 such
that for all balls B D B�.x/ and all x 2 ˆ2.Z2/, we haveZ

B

dist.Du; �/ dx � c2: (6.21)

To prove (6.21), we consider once again the change of variables y D ˆ2.x/ to writeZ
B

dist.Du; �/ dy D
Z
ˆ�12 .B/

dist.Du; �/.ˆ2.x// det.Dˆ2.x// dx:

By Lemma 6.10 and (6.18), we obtain a constant c3 D c3.�/ > 0 such thatZ
ˆ�12 .B/

dist.Du; �/.ˆ2.x// det.Dˆ2.x// dx � c3

Z
ˆ�12 .B/

det.Dˆ2.x//
jD2'j.x/

dx

�
c3

2
jˆ�12 .B/j: (6.22)

By Lemma 6.5, we have that B � ˆ2.Z4/ and hence we can apply Corollary 6.7 to find
a lower bound on jˆ�12 .B/j in terms of .�0/2 D c�2=˛�2=˛ . Recalling from Theorem 6.6
and Lemma 6.8 that c, �, and ˛ only depend on �, we see that this estimate, combined
with (6.22), implies the required universal estimate (6.21), which concludes the proof.
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A. Proof of Theorem 2.6

We will freely use the notation of Section 2.2. Moreover, we introduce the measure

�.E/ �

Z
E

w.x/ dx:

We can assume that w is not identically 0 in�, otherwise the proof is finished. Now let w
satisfy (2.3) with constants 
 and C , where t D 2 without loss of generality. By the exact
same argument as in the proof of (c)) (d) of [24, Theorem 9.3.3], we find that

�.A/ � C
�
jAj

jBj

� 

1C

�.B/; 8B 2 B2.�/; 8A � B measurable:

We divide the proof into three steps.

Step 1: w > 0 a.e. in �. A short proof of this property can be found in [29, Lemma
14.5.1].

Step 2: Doubling property of �. We have the following property: there exist ˛; ˇ 2 .0; 1/
depending only on n and on the constants 
 and C of (2.3) such that, for everyB 2B2.�/

and for all measurable A � B ,

�.A/ � ˛�.B/ H) jAj � ˇjBj: (A.1)

This is shown exactly as in the step (d)) (e) of [24, Theorem 9.3.3].
We now note that (A.1) implies the doubling property of the measure � � w dx for

balls B 2 B8.�/ � B2.�/. Indeed, we can first choose any constant 1 < � < 2 such that

j.�B/ n Bj �
1 � ˇ

2ˇ
jBj; for every ball B � Rn:

Notice that � only depends on C and 
 through ˇ. But then (A.1) implies that

�.B/ > ˛�.�B/; for every ball B � Rn such that �B 2 B2.�/:

This can be reiterated in an obvious way to obtain a constant c > 0 depending on n, 
 ,
and C such that the following doubling property of � holds:

�.3B/ � c�.B/; 8B 2 B8.�/: (A.2)

Step 3: Showing (2.4). The doubling property (A.2) allows us to pass from balls to cubes.
We use for cubes the same notation as for balls: Q is a shorthand notation for Qr .x/,
the open cube of side 2r centered at x, and �Q is a shorthand notation for Q�r .x/. In
particular, notice that for all r > 0 and x 2 Rn,

Qr=2.x/ � Br .x/ � Qr .x/: (A.3)
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Set, for t � 1,
Qt .�/ �

®
Q W Q is a cube with tQ � �

¯
:

Using (A.3), from (A.2) we immediately deduce

�.3Q/ � c�.Q/; 8Q 2 Q32.�/;

and that, due to (A.1), there exist Q̨ ; Q̌ 2 .0; 1/ depending only on n, 
 , and C such that,
for every Q 2 Q32.�/ and for all measurable A � Q,

�.A/ � Q̨�.Q/ H) jAj � Q̌jQj:

This can be rewritten in terms of w as

�.A/ � Q̨�.Q/ H)

Z
A

w�1.x/ d�.x/ � Q̌
Z
Q

w�1.x/ d�.x/: (A.4)

We can finally conclude the proof of (2.4). We follow the proof of (e)) (f) of [24,
Theorem 9.3.3]. In [24, Corollary 9.2.4], it is shown that property (A.4) implies a reverse
Hölder inequality for w�1 with respect to the measure �. The corollary is stated over Rn

but its proof is clearly local, i.e. it only depends on the estimate (A.4) inside the cube Q
and on properties of w inside Q; see also [24, Theorem 9.2.2]. In particular, it is easy to
see that it works verbatim in our case as well. Thus, employing the same proofs as [24,
Theorem 9.2.2 and Corollary 9.2.4], we see that (A.4) implies a reverse Hölder inequality
for w�1 with respect to the measure �, i.e. there exist " > 0, c > 1 only depending on n,
Q̨ , and Q̌, and hence ultimately only on n, 
 , C , such that�

1

�.Q/

Z
Q

w�.1C"/ d�.x/
� 1
1C"

�
c

�.Q/

Z
Q

w�1 d�.x/; (A.5)

for all Q 2 Q32.�/. Rewrite (A.5) asZ
Q

w�" dx � c1C"jQj1C"�.Q/�" D c1C"jQj1C"
�Z

Q

w.x/ dx
��"

: (A.6)

Due to (A.3) and the monotonicity of the integrals, (A.6) impliesZ
B

w�" dx � c1C"2n.1C"/jBj1C"
�Z

B

w.x/ dx
��"

;

for all balls B 2 B32.�/, which is precisely (2.4). This concludes the proof.
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