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Sharp Fourier extension for functions
with localized support on the circle

Lars Becker

Abstract. A well-known conjecture states that constant functions are extremizers of
the L2 ! L6 Tomas–Stein extension inequality for the circle. We prove that func-
tions supported in a

p
6=80-neighborhood of a pair of antipodal points on S1 satisfy

the conjectured sharp inequality. In the process, we make progress on a program for-
mulated by Carneiro, Foschi, Oliveira e Silva and Thiele to prove the sharp inequality
for all functions.

1. Introduction

We are interested in the conjecture that constant functions are extremizers for the Tomas–
Stein Fourier extension inequality for the circle

(1.1) kcf�kL6.R2/ � Ckf kL2.�/:

Here � is the arc length measure on the unit circle S1 � R2 and O�.�/ D
R
e�ix� d�.�/ is

the Fourier transform.
The corresponding conjecture for S2 was proven by Foschi [9], and in [3], Foschi’s

argument is adapted to S1, and the conjecture of interest is reduced to the following.

Conjecture 1.1. The quadratic form

Q.f / WD

Z
.S1/6

.j!1C!2C!3j
2
� 1/.f .!1;!2;!3/

2
� f .!1;!2;!3/f .!4;!5;!6//d†

is positive semi-definite on the subspace V of all antipodal functions in L2..S1/3;R/.
Here we denote

d† D d†.!/ D ı
� 6X
jD1

!k

� 6Y
jD1

d�.!j /;

and a function f is antipodal if f .˙!1;˙!2;˙!3/ does not depend on the choice of
signs.
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Conjecture 1.1 has been verified for all functions with Fourier modes up to degree 120
in [15] and [1], via a numerical computation of the eigenvalues of Q on the finite dimen-
sional space of such functions. Further, using different methods, in [7] the conjectured
sharp form of inequality (1.1) has been established for certain infinite dimensional sub-
spaces of L2.�/ with constrained Fourier support. Our main result establishes Conjec-
ture 1.1 for functions with localized spatial support.

Let C" be the cylinder of radius " centered at the line R.1; 1; 1/, and define

V" WD
°
f 2V W suppf .ei�1 ; ei�2 ; ei�3/ �

[
k2�Z3

k C C"

±
:

Theorem 1.2. Let " D 1=20. Then for all f 2V", it holds that Q.f / � 0.

Note that since constant functions are in the kernel of Q, the same result holds for
V" ˚ h1i, where 1 is the constant 1 function.

As a corollary, functions with support sufficiently close to a pair of antipodal points
satisfy (1.1) with the conjectured sharp constant. Define

ˆ.g/ WD
kcg�kL6.R2/

kgkL2.�/
�

Corollary 1.3. Let "0 D
p
3=8". Suppose that g 2L2.�/ is such that g.ei� / is supported

in .�"0; "0/C �Z. Then ˆ.g/ � ˆ.1/, where 1 is the constant 1 function on S1.

Note that by rotation symmetry, the same holds when g.ei� / is supported in I C �Z
for any interval I of length 2"0.

The constants " and "0 in Theorem 1.2 and Corollary 1.3 are not optimal. Numerical
computations suggest that with our method " can be improved up to about 0:104, and "0

up to about 0:063, see Section 7.
The numerical results in [1] suggest that eigenfunctions ofQ on the subspace of func-

tions with Fourier modes up to degree N corresponding to small eigenvalues concentrate
in space. Theorem 1.2 shows that Q is positive on all such sufficiently concentrated func-
tions, thus it should be a useful partial result in establishing positive semi-definiteness
of Q on the full space of antipodal functions. A more precise observation by Jiaxi Cheng,
a graduate student in Bonn, is that the smallest eigenvalue is of size � N�2 log.N /, see
Section 2 of [13]. The existence of such an eigenvalue is also explained by the asymp-
totic formula for the multiplier m in Lemma 4.1, which looks like cjlogjxjj jxj2 near 0.
Unfortunately, we cannot prove that this is the smallest eigenvalue.

More generally, the topic of sharp Fourier extension inequalities has attracted a lot of
interest in recent years. In the following, we consider general dimensions d � 2. Then the
Tomas–Stein extension inequality states that for every

q � qd WD
2.d C 1/

d � 1
,

there exists C.d; q/ > 0 such that, for all f 2L2.Sd�1; �d�1/,

(1.2) kcf�kLq.Rd / � C.d; q/kf kL2.�/:

Here �d�1 denotes the d � 1-dimensional Hausdorff measure on Sd�1.
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It is known that extremizers for (1.2) exist when q > qd , for all d , see [8]. At the
endpoint q D qd , existence and smoothness of extremizers have been shown for d D 3
in [5, 6] and for d D 2 in [17, 18]. For higher dimensional spheres d � 4, existence of
extremizers for q D qd is known conditional on the conjecture that Gaussians maximize
the corresponding extension inequality for the paraboloid, see [11].

For certain specific choices of .d; q/, a full characterization of the extremizers of (1.2)
is known. Most such results grew out of the work of Foschi [9], who showed that con-
stant functions maximize (1.2) for .d; q/ D .2; 4/, and gave a full characterization of all
complex valued maximizers. His method can be adapted for some non-endpoint extension
inequalities on higher dimensional spheres, see [4]. Using different methods, maximizers
of (1.2) for some choices of .d; q/ with even q > 4 are characterized in [14]. In some
further cases, it is known that constant functions are local maximizers. This was shown
in [3] for .d; q/D .2; 6/, and in [12] for .d; qd / with 3 � d � 60. For further background
and references on sharp Fourier extension inequalities, we refer to [10] and [13].

2. Proof of Corollary 1.3

Corollary 1.3 is a direct consequence of Theorem 1.2 and the program formulated in [3].
We give a brief sketch of the implication here; for the details of the program and proofs,
we refer the reader to [3].

Proof of Corollary 1.3. Let g2L2.�/ be such that g.ei� / is supported in .�"0; "0/C �Z.
Define Qg.x/ D g.�x/ and

g# D

r
jgj2 C j Qgj2

2
�

As shown in [3], Step 1 and 2, it holds thatˆ.g/ �ˆ.g#/, and g# is antipodal and g#.e
i� /

is supported in .�"0; "0/C �Z. Define f .!1; !2; !3/ WD g#.!1/g#.!2/g#.!3/. Then the
function f .ei�1 ; ei�2 ; ei�3/ is supported in

S
k2�Z3 k C .�"

0; "0/3. Since .�"0; "0/3 is a
subset of the cylinder Cp8=3"0 , it follows that f 2 Vp8=3"0 D V", hence Q.f / � 0, by
Theorem 1.2. This verifies Conjecture 1.4 in [3] for g#. Using Step 3, 4 and 5 in [3], we
conclude that ˆ.g/ � ˆ.1/.

3. Proof of Theorem 1.2

3.1. Orthogonal decomposition

We consider the sesquilinear form

B.f; g/ D

Z
.S1/6

.j!1 C !2 C !3j
2
� 1/

� .f .!1; !2; !3/ g.!1; !2; !3/ � f .!1; !2; !3/ g.!4; !5; !6// d†.!/:

By a change of variables, it holds that B.f; g/ D B.Rf; Rg/, where Rf .!1; !2; !3/ D
f .ei!1; e

i!2; e
i!3/. Define

Zd D ¹.k1; k2; k3/ 2 .2Z/
3
W k1 C k2 C k3 D dº
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and
Xd D

° X
k2Zd

ak!
k1
1 !

k2
2 !

k3
3 W .ak/ 2 `

2.Zd /
±
� L2..S1/3/:

For d ¤ d 0, the spaces Xd and Xd 0 are eigenspaces of R with different eigenvalues eid

and eid
0

, and hence are orthogonal with respect to B . Note that the orthogonal projec-
tion �d onto Xd can be expressed as

�d .f /.!1; !2; !3/ D

Z 1

0

e�2�idtf .e2�it!1; e
2�it!2; e

2�it!3/ dt;

which implies that �d .V"/ � V". Therefore, we have that

V" D
M
d2Z

�d .V"/ D
M
d2Z

.V" \Xd /:

Hence, it suffices to show positive semi-definiteness of B on each of the spaces

Xd;" WD V" \Xd :

3.2. Reducing the dimension

From now on, we use the convention that

(3.1) !i D .cos.�i /; sin.�i //;

and abuse notation by writing f .!.�// D f .�/. We also define

a.�1; �2; �3/ WD .cos.�1/C cos.�2/C cos.�3//2 C .sin.�1/C sin.�2/C sin.�3//2

D j!1 C !2 C !3j
2;

so that the weight in the bilinear form B is given by a � 1, and record the useful identity

(3.2) a.�1; �2; �3/ D 3C 2 cos.�1 � �2/C 2 cos.�2 � �3/C 2 cos.�3 � �1/:

The domain of integration ! 2 .S1/6 in the bilinear form B becomes � 2R6=.2�Z/6.
As we assume that f 2Xd for some d , we fully understand how f transforms under
simultaneous rotations of !1; !2; !3 by the same angle. We will use this to integrate out
such simultaneous rotations of !1;!2;!3 and of !4;!5;!6. These rotations correspond to
shifts of .�1; �2; �3/ and .�4; �5; �6/ in direction .1; 1; 1/, which makes it natural to choose
the following fundamental domain of R3=.2�Z/3 as our domain of integration in � .

Lemma 3.1. Let C be the rhombus with corners

.�;��; 0/;
�
�
�

3
,�
�

3
, 2�
3

�
; .��; �; 0/ and

��
3

, �
3

,�
2�

3

�
:

Then the prism P WD C C ¹.t; t; t / W t 2 Œ0; 2�/º over C of height 2�
p
3 is a fundamental

domain for R3=.2�Z/3.
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Figure 1. Left: The lattice 1
2ƒ in the hyperplane H and the fundamental domain C (gray) of ƒ.

The restriction jf jjH is supported in the union of the dashed balls and periodic with respect to 1
2ƒ.

Right: One possible choice of a fundamental domain C 0 such that f jC 0 is supported in the union of
the balls (dashed) B1; B2; B3 and B4.

Proof. Denote by p the orthogonal projection onto the hyperplane

H WD ¹.�1; �2; �3/ W �1 C �2 C �3 D 0º:

The image of .2�Z/3 under p is the hexagonal lattice

ƒ WD Zv1 ˚ Zv2 � H;

where
v1 WD

�4�
3

,�
2�

3
,�
2�

3

�
and v2 WD

�
�
2�

3
, 4�
3

,�
2�

3

�
:

It is easy to see that the rhombus C is a fundamental domain of H modulo the lattice ƒ.
Thus for every x, there exists y with x � y 2 .2�Z/3 and p.y/ 2 C . Then for an appro-
priate choice of k 2 Z, the point z D y C 2�k.1; 1; 1/ lies in P , and x � z 2 .2�Z/3.

Conversely, let z; z02P be such that z � z02.2�Z/3. Then p.z/ � p.z0/ lies in
p..2�Z/3/D ƒ, and p.z/; p.z0/ 2 C . It follows that p.z/D p.z0/. Thus z � z0 2 2�Z �
.1; 1; 1/, and from z; z0 2 P , it follows that z D z0.

In the next lemma, we perform integrations in direction .1; 1; 1/ in .�1; �2; �3/ and
.�4; �5; �6/, thereby reducing to a quadratic form depending only on the restriction f jC .
We define the function �d WC � C ! S1 by

�d .�
0
1; �
0
2; �
0
3; �1; �2; �3/ D exp.id � .arg.ei�

0
1 C ei�

0
2 C ei�

0
3/� arg.ei�1 C ei�2 C ei�3///:
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The only property of �d that will be used in the proof below is that j�d j D 1.

Lemma 3.2. For all d 2 Z and all f 2Xd , we have that B.f; f / equals

12�

Z
C 2
ı.a.�/ � a.� 0//.a.�/ � 1/.jf .�/j2 � �d .�

0; �/f .�/f .� 0// dH2
C .�/ dH2

C .�
0/:

Here H2
C denotes the 2-dimensional Hausdorff measure on C .

Proof. By Lemma 3.1, we have

B.f; f / D

Z
P�P

ı.!1 C !2 C !3 � !4 � !5 � !6/.j!1 C !2 C !3j
2
� 1/

�
�
jf .!1; !2; !3/j

2
� f .!1; !2; !3/ f .!4; !5; !6/

� 6Y
jD1

d�j

D 2�
p
3

Z
C�P

ı.!1 C !2 C !3 � !4 � !5 � !6/.j!1 C !2 C !3j
2
� 1/

�
�
jf .!1; !2; !3/j

2
�f .!1; !2; !3/ f .!4; !5; !6/

�
dH2

C .�1; �2; �3/

6Y
jD4

d�j :

Here we have used that f 2Xd , to integrate out simultaneous rotations of all 6 points !j
by the same angle. For x; y 2 R2, it holds that

ı.x � y/ D 2ı.jxj2 � jyj2/ ı.arg.x/ � arg.y//:

Hence, we can rewrite the last expression as

D 4�
p
3

Z
C�P

ı.j!1 C !2 C !3j
2
� j!4 C !5 C !6j

2/

� ı.arg.!1 C !2 C !3/ � arg.!4 C !5 C !6//.j!1 C !2 C !3j2 � 1/

�
�
jf .!1; !2; !3/j

2
� f .!1; !2; !3/f .!4; !5; !6/

�
dH2

C .�1; �2; �3/

6Y
jD4

d�j

D 12�

Z
C�C

Z 2�

0

ı.a.�1; �2; �3/ � a.�4; �5; �6//

� ı.arg.!1 C !2 C !3/ � arg.!4 C !5 C !6/ � t /.a.�1; �2; �3/ � 1/

�
�
jf .!1; !2; !3/j

2
� f .!1; !2; !3/f .eit!4; eit!5; eit!6/

�
dt dH4

C�C .�/:

Since f 2Xd , we have

f .eit!4; e
it!5; e

it!6/ D e
itdf .!4; !5; !6/:

Thus, we can integrate out t and obtain the claimed identity.
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3.3. Completing the proof

By Lemma 3.2, we have for all d and all f 2Xd ,

B.f; f / � 12�

Z
C

jf .�/j2 .a.�/ � 1/

Z
C

ı.a.�/ � a.� 0// dH2
C .�

0/ dH2
C .�/

� 12�

Z
C 2
ı.a.�/ � a.� 0// ja.�/ � 1j jf .�/j jf .� 0/j dH2

C .�/ dH2
C .�

0/

DW 12�.I � II/:(3.3)

If f 2Xd;", then the restriction of f onto the hyperplane H D ¹.�1; �2; �3/ W �1 C �2 C
�3D 0º is supported in 1

2
ƒCB".0/. Furthermore, the function jf j is periodic with respect

to 1
2
ƒ, since it is periodic with respect to �Z3 and invariant under all translations in

direction .1; 1; 1/. Thus it suffices to show the following.

Lemma 3.3. Suppose that " � 1=20. Then for all functions f WH ! Œ0;1/ that are
periodic with respect to 1

2
ƒ and supported in 1

2
ƒC B".0/, it holds that I � II.

Proof. Recall that C is a fundamental domain of the latticeƒ. The expressions in the inte-
grals for the terms I and II areƒ periodic, so we may replace C by any other fundamental
domain C 0. Since f is supported in 1

2
ƒC B.0; "/, there exists a fundamental domain C 0

such that f jC 0 is supported in

B".0; 0; 0/ [ B"

�2�
3
;�
�

3
;�
�

3

�
[ B"

�
�
�

3
;
2�

3
;�
�

3

�
[ B"

�
�
�

3
;�
�

3
;
2�

3

�
DW B1 [ B2 [ B3 [ B4:

We decompose

I D
4X
iD1

Z
Bi

jf .�/j2 .a.�/ � 1/

Z
C

ı.a.�/ � a.� 0// dH2
C .�

0/ dH2
C .�/ DW

4X
iD1

Ii ;(3.4)

II D
X

1�i;j�4

Z
Bi�Bj

ı.a.�/ � a.� 0//ja.�/ � 1jjf .�/jjf .� 0/j dH2
C .�/ dH2

C .�
0/

DW

X
1�i;j�4

IIij :(3.5)

Note that j� j < �=6 implies, by (3.2), that a.�/ � 3C 6 cos.�=3/ D 6, and that similarly
j� � .2�=3;��=3;��=3/j < �=6 implies that a.�/ � 3. Therefore, for j D 2; 3; 4 the
measure ı.a.�/ � a.� 0// vanishes on B1 � Bj , thus I1j D Ij1 D 0.

Next, we record that II11 � I1, by Cauchy–Schwarz, and since a.�/ � 6 on B1,

II11 D
Z
B21

ı.a.�/ � a.� 0//ja.�/ � 1j jf .�/j jf .� 0/j dH2
C .�/ dH2

C .�
0/

�
1

2

Z
B21

ı. Qa.�/ � Qa.� 0//. Qa.�/ � 1/.jf .�/j2 C jf .� 0/j2/ dH2
C .�/ dH2

C .�
0/

�

Z
B1

jf .�/j2 . Qa.�/ � 1/

Z
C

ı. Qa.�/ � Qa.� 0// dH2
C .�/ dH2

C .�
0/ D I1:
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The remaining terms are estimated in the next two sections. By Lemmas 4.1 and 5.1, we
have

I2 C I3 C I4 � 30
Z
B1

j� j2 jf .�/j2 dH2
H .�/ > 9

101

100
�

Z
B1

j� j2 jf .�/j2 dH2
H .�/

�

X
2�i;j�4

IIij ;

which completes the proof.

4. Estimating term I

Lemma 4.1. It holds that

(4.1) I2 C I3 C I4 D
Z
B1

m.�/ jf .�/j2 dH2
H .�/;

where Ij is defined in (3.4), and m.�/ � 30j� j2.

Proof. By definition of the Ij , equation (4.1) holds with

m.�/ D

4X
jD2

.a.� C cj / � 1/

Z
C

ı.a.� C cj / � a.�
0// dH2

C .�
0/;

where cj is the center of the ball Bj . Reversing the argument in the proof of Lemma 3.2,
it follows that for x 2 R2,Z

C

ı.jxj2 � a.� 0// dH2
C .�

0/

D
1
p
3

Z
P

ı.jxj2 � j!1 C !2 C !3j
2/ ı.arg.x/ � arg.!1 C !2 C !3//

3Y
jD1

d� 0j

D
1

2
p
3

Z
.S1/3

ı.x � .!1 C !2 C !3//

3Y
jD1

d�.!j / D
1

2
p
3
� � � � �.x/:

The convolution � � � � � is radial. We set � � � � �.x/ D �.jxj/, giving

(4.2) m.�/ D
1

2
p
3

4X
jD2

.a.� C cj / � 1/ �
�p
a.� C cj /

�
:

In polar coordinates0@�1�2
�3

1A D s cos.˛/
1
p
2

0@ 1

�1

0

1AC s sin.˛/
1
p
6

0@ 1

1

�2

1A ;(4.3)
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we compute in Lemma 6.6 the asymptotic expansion

.a.� C c4/ � 1/ �
�p
a.� C c4/

�
D �12s2.3 sin2.˛/ � cos2.˛// log.s/(4.4)

� 6s2.3 sin2.˛/ � cos2.˛// logj3 sin2.˛/ � cos2.˛/j(4.5)

C 18 log 2 s2.3 sin2.˛/ � cos2.˛//(4.6)
CE;

with
jEj � �180s4 log s C 71s4 when s � 1=20.

As the function a is invariant under permutation of its arguments and constant in direction
.1; 1; 1/, it is invariant under the rotation T by 2�=3 about the line R.1; 1; 1/. Since

c2C �.˛; s/D T .c4C �.˛C 4�=3; s// and c3C �.˛; s/D T
2.c4C �.˛C 2�=3; s//;

we obtain the same asymptotic expansion for a.� C cj /�.
p
a.� C cj / /, j D 2; 3, but

with ˛ replaced by ˛ C 4�=3 and ˛ C 2�=3.
We now consider (4.2). The term (4.4) contributes �6

p
3s2 log.s/ to m, and the

term (4.6) contributes 9
p
3 log.2/s2, since for all ˛,

3X
jD1

�
3 sin2

�
˛ C

2�j

3

�
� cos2

�
˛ C

2�j

3

��
D 3:

For term (4.5), we use the sharp estimate

3X
jD1

�
3 sin2

�
˛C

2�j

3

�
� cos2

�
˛C

2�j

3

��
log

ˇ̌̌
3 sin2

�
˛C

2�j

3

�
� cos2

�
˛C

2�j

3

�ˇ̌̌
� 3 log.3/;

which we prove in Lemma 6.7. Hence, for s � 1=20,

m.�/ � �6
p
3s2 log.s/C

�
9
p
3 log.2/ � 3

p
3 log.3/

�
s2 C 90

p
3s4 log s � 62s4

�

�
6
p
3 log.20/C 9

p
3 log.2/ � 3

p
3 log.3/ �

90
p
3

400
log.20/ �

62

400

�
s2

� 34:906 s2;

as claimed.

5. Estimating term II

Lemma 5.1. For all 2 � i; j � 4 and all f , it holds that

IIij �
101

100
�

Z
B1

j� j2jf .�/j2 dH2
H .�/:
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Proof. We first treat the term II44, and later explain the changes for the other terms. We
have

II44 D
Z
B4�B4

ı
�
1 �

1 � a.� 0/

1 � a.�/

�
jf .�/j jf .� 0/j dH2

H .�/ dH2
H .�

0/

D

Z
B1�B1

ı
�
1 �

1 � a.c4 C �
0/

1 � a.c4 C �/

�
jf .�/j jf .� 0/j dH2

H .�/ dH2
H .�

0/:

We introduce polar coordinates � D �.s; ˛/ as in (4.3) and write also � 0 D �.t; ˇ/. With
the definitions

h.s; t; ˛; ˇ/ WD
1 � a.c4 C �

0/

1 � a.c4 C �/
and g.s; ˛/ WD j� j2 jf .�/j;

we obtain, by changing variables,

(5.1) II44 D
Z 2�

0

Z 2�

0

Z "

0

Z "

0

ı.1 � h.s; t; ˛; ˇ//g.s; ˛/g.t; ˇ/
ds
s

dt
t

d˛ dˇ:

Doing a Taylor expansion of 1 � a.c4 C �/ at 0 yields (see Lemma 6.5)

(5.2) h.s; t; ˛; ˇ/ D
t2

s2
3 sin2.ˇ/ � cos2.ˇ/
3 sin2.˛/ � cos2.˛/

1C  .t; ˇ/

1C  .s; ˛/
,

where  .s; ˛/ is a smooth function of s and ˛, and  .s; ˛/ D O.s2/. If the last factor
in (5.2) were equal to 1, then the inner two integrals in (5.1) would simplify toZ 1

0

g.s; ˛/ g.c.˛; ˇ/s; ˇ/
ds
s

,

for some constant c.˛; ˇ/, which is easily estimated using Cauchy–Schwarz. The follow-
ing is a perturbed version of this argument.

Fix ˛, ˇ and write h.s; t/D h.s; t;˛;ˇ/. Let s.t/ be defined implicitly by h.s.t/; t/D 1
(note that s also depends on ˛ and ˇ). ThenZ "

0

Z "

0

ı.1�h.s; t//g.s; ˛/g.t; ˇ/
ds
s

dt
t
D

Z "

0

g.t; ˇ/g.s.t/; ˛/
1

j@sh.s.t/; t/j

1

s.t/ t
dt

D

Z "

0

g.t; ˇ/g.s.t/; ˛/
1

2Cs.t/  0.s.t/;˛/
1C .s.t/;˛/

1

t
dt:(5.3)

Here we used that

@sh.s; t/ D �h.s; t/
�2
s
C

 0.s; ˛/

1C  .s; ˛/

�
;

and hence

�@sh.s.t/; t/ D
2

s.t/
C

 0.s.t/; ˛/

1C  .s.t/; ˛/
�
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Applying Cauchy–Schwarz, we obtain that (5.3) is bounded by

(5.4)

�Z "

0

g.t; ˇ/2
1

2C s.t/  0.s.t/;˛/
1C .s.t/;˛/

1

t
dt
�1=2

�

�Z "

0

g.s.t/; ˛/2
1

2C s.t/  0.s.t/;˛/
1C .s.t/;˛/

1

t
dt
�1=2

:

After substituting s D s.t/ in the second integral, its integrand becomes the same as in the
first one, but with the roles of .s; ˛/ and .t; ˇ/ interchanged. By Lemma 6.5, it holds for
s � 1=20 that

j .s; ˛/j <
1

100
and j 0.s; ˛/j �

1

10
,

giving ˇ̌̌
s
 0.s; ˛/

1C  .s; ˛/

ˇ̌̌
�

1

198
�

Thus, the factor in the integrals in (5.4) is bounded above by 198=395 < 101=200. It
follows that

II44 �
101

200

Z 2�

0

Z 2�

0

� Z "

0

g.t; ˇ/2
dt
t

�1=2� Z "

0

g.s; ˛/2
ds
s

�1=2
d˛ dˇ

�
101

100
�

Z 2�

0

Z "

0

jg.s; ˛/j2
dt
t

d˛ D
101

100
�

Z
B1

j� j2 jf .�/j2 dH2
H .�/:

For the other eight integrals, the same estimate holds: by the argument in the proof of
Lemma 4.1, changing c4 to some other cj only changes the expansion in (5.2) by a trans-
lation in ˛ and ˇ. Then the rest of the argument goes through exactly as for II44.

6. Technical estimates

Here we prove the computational lemmas that were used in the main argument.
We have the following explicit formula for � (see [3], Lemma 8):

(6.1) �.r/ D
4

r

Z 1

A.r/

du
p
1 � u2

q
.1�r/2

2r
C 1 � u

q
.3Cr/.1�r/

2r
C 1C u

,

with

A.r/ D �1Cmax
°
0;
.3C r/.r � 1/

2r

±
:

From this, we obtain the following asymptotic formula.

Lemma 6.1. Let � be defined by �.jxj/ D � � � � �.x/. Then we have, for all r with
jr � 1j � 1=10,

j�.r/C 6 logj1 � r j � 12 log 2j � �22 jr � 1j logjr � 1j C 23 jr � 1j:
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We have not tried to optimize the error in this estimate. We give an elementary, self-
contained proof below. For an alternative proof, one can use the identity (see p. 12 of [16]
or equation (1.2) in [2])

(6.2) �.x/ D

8̂̂̂<̂
ˆ̂:

16p
.xC1/3.3�x/

K
�q

16x
.xC1/3.3�x/

�
if 0 � x < 1;

4p
x
K
�q

.xC1/3.3�x/
16x

�
if 1 < x � 3,

0 if x > 3,

where

K.k/ D

Z 1

0

1
p
1 � x2

p
1 � k2x2

dx

is the complete elliptic integral of the first kind, together with known asymptotics forK.k/
as k % 1.

We first prove some auxiliary lemmas.

Lemma 6.2. For all ı > 0, it holds that

0 �

Z 1

0

1
p
u
p
uC ı

du � log
�4
ı

�
�
1

2
ı:

Proof. We have Z 1

0

1
p
u
p
uC ı

du D � log.ı/C 2 log
�
1C

p
1C ı

�
:

Furthermore, by the mean value theorem, there exists 0 < ı0 < ı such that

log
�
1C

p
1C ı

�
D log.2/C ıg.ı0/;

where
0 < g.ı/ D

1

2.1C
p
1C ı/

p
1C ı

�
1

4

is the derivative of log.1C
p
1C ı /.

Lemma 6.3. For all 0 < a; b < 1, we haveˇ̌̌ Z 1

0

1
p
1 � x2

p
aC 1 � x

p
b C 1C x

dx �
Z 1

0

1
p
1 � x2

p
aC 1 � x

p
1C x

dx
ˇ̌̌

�
b

2

�
log

�4
a

�
C
a

2

�
:

Proof. By the mean value theorem, we have for all x � 0,

j.b C 1C x/�1=2 � .1C x/�1=2j �
1

2
b:

Hence the left-hand side of the claimed inequality is estimated by

b

2

Z 1

0

1
p
1 � x

p
aC 1 � x

dx �
b

2

�
log

�4
a

�
C
a

2

�
;

where we applied Lemma 6.2.
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Lemma 6.4. For all 1 > a > 0, we haveˇ̌̌ Z 1

0

1

.1C x/
p
1 � x

p
aC 1 � x

dx �
1

2
log

�8
a

�ˇ̌̌
�
1

2
a log

�
1C

1

a

�
:

Proof. We have, with v D 1 � x,Z 1

0

1

.1C x/
p
1 � x

p
aC 1 � x

dx D
Z 1

0

1

.2 � v/
p
v
p
aC v

dv;

which can be expanded to equal

1

2

Z 1

0

1
p
v
p
aC v

dv C
1

2

Z 1

0

1

2 � v
dv �

a

2

Z 1

0

1

.2 � v/
p
aC v.

p
v C
p
aC v/

dv:

Computing the second integral and using Lemma 6.2 for the first one yields the main term
log.8=a/=2. For the error estimate, we combine Lemma 6.2 and the boundZ 1

0

1

.2 � v/
p
aC v.

p
v C
p
aC v/

dv �
Z 1

0

1

v C a
dv D log

�
1C

1

a

�
;

and note that the errors have opposite signs.

Proof of Lemma 6.1. We start with the case r D 1 � " < 1. By (6.1), we have

1 � "

4
�.1 � "/ D

Z 1

�1

1
p
1 � u2

q
"2

2�2"
C 1 � u

q
.4�"/"
2�2"

C 1C u

du:

Combining Lemma 6.3 and Lemma 6.4 with a D "2=.2� 2"/ and b D .4� "/"=.2� 2"/,
we obtain that this integral equals

1

2

�
log

�8
a

�
C log

�8
b

��
CE D 3 log.2/�

3

2
log."/� log.2� 2"/C

1

2
log.4� "/CE;

with

(6.3) jEj �
1

2

�
b log

�4
a

�
C a log

�4
b

�
C ab C a log

�
1C

1

a

�
C b log

�
1C

1

b

��
:

It is easy to see that ˇ̌̌1
2

log.4 � "/ � log.2 � 2"/
ˇ̌̌
�
"

2
�

Further, one verifies that, when 0 < " � 1=10,

a �
1

18
"; b �

19

9
"; log

�4
a

�
� 3 log.2/ � 2 log."/; log

�4
b

�
� log.2/ � log."/

and
log

�
1C

1

a

�
� log.2/ � 2 log."/; log

�
1C

1

b

�
� � log."/:
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Using this, one can check that

jEj �
13

4
" log

�1
"

�
C
5

2
":

To summarize, we have shown thatˇ̌̌1 � "
4

�.1 � "/ � 3 log.2/C
3

2
log."/

ˇ̌̌
�
13

4
" log

�1
"

�
C 3":

We multiply by 4=.1 � "/, and use that j4=.1 � "/ � 4j � 40"=9 to obtain

j�.1 � "/ � 12 log.2/C 6 log."/j � 22" log
�1
"

�
C 23":

Now we turn to the case r D 1C " > 1. There we have

�.1C "/ D
4

1C "

Z 1

�1C
.4C"/"
2C2"

1
p
1 � u2

q
"2

2C2"
C 1 � u

q
�
.4C"/"
2C2"

C 1C u

du

D
16

4 � "2

Z 1

�1

1
p
1 � v2

q
2"2

4�"2
C 1 � v

q
8"
4�"2
C 1C v

dv:

We first approximate the integral. We can argue as in the case r < 1, now with a D
2"2=.4 � "2/ and b D 8"=.4 � "2/. The main term is easily seen to be the same as in
the case r < 1, and the error is bounded by

� log
�
1 �

"2

4

�
CE �

"

40
CE;

with E satisfying (6.3). Now we have

a �
1

15
"; b �

800

399
"; log

�4
a

�
� 3 log.2/ � 2 log."/; log

�4
b

�
� log.2/ � log."/;

and
log

�
1C

1

a

�
� log

�201
100

�
� 2 log."/; log

�
1C

1

b

�
� � log."/:

Using this, we obtain

jEj C
"

40
�
13

4
" log

�1
"

�
C
9

4
":

In other words, it holds thatˇ̌̌4 � "2
16

�.1C "/ � 3 log.2/C
3

2
log."/

ˇ̌̌
�
13

4
" log

�1
"

�
C
9

4
":

We multiply by 16=.4 � "2/ and use that j16=.4 � "2/ � 4j � 40"=399 to obtain

j�.1C "/ � 12 log.2/C 6 log."/j � 14" log
�1
"

�
C 9":

This completes the proof.
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Lemma 6.5. Let � be given by (4.3). Then it holds that

a.c4 C �/ � 1 D s
2.3 sin2.˛/ � cos2.˛//.1C  .s; ˛//;

where  .s; ˛/ is a smooth function satisfying the following estimates:

j .s; ˛/j �
7

24
s2 C

17

720
s4 C s6 e

p
2s;

j 0.s; ˛/j �
14

24
s C

17

180
s3 C 2s5 e

p
2s :

Proof. By the definition of h, the trigonometric identities and the Taylor expansion of cos,
we have

a.c4 C �/ � 1 D a..0; 0; �/C �/ � 1

D .cos.�1/C cos.�2/ � cos.�3//2 C .sin.�1/C sin.�2/ � sin.�3//2 � 1
D 2C 2 cos.�1 � �2/ � 2 cos.�1 � �3/ � 2 cos.�2 � �3/

D 2

1X
kD1

.�1/k

.2k/Š
..�1 � �2/

2k
� .�1 � �3/

2k
� .�2 � �3/

2k/(6.4)

DW

1X
kD1

s2k
.�1/k

.2k/Š
P2k.sin.˛/; cos.˛//:

It follows from (6.4) that each P2k vanishes when �1 D �3 and when �2 D �3, which is
equivalent to ˛ D ˙�=6, or to cos.˛/ D ˙

p
3 sin.˛/. Hence, the homogeneous polyno-

mial P2k.X; Y / vanishes on the lines
p
3X C Y D 0 and

p
3X � Y D 0. We conclude

that for all k, the factor 3X2 � Y 2 divides P2k.X; Y /. Define Q2k by

Q2k.X; Y /.3X
2
� Y 2/ D .�1/kP2k.X; Y /:

Then we have, using that Q2 D 1,

a.c4 C �/ � 1 D s
2.3 sin2.˛/ � cos2.˛//.1C  .s; ˛//;

where  is defined by

 .s; ˛/ D

1X
kD2

s2k�2
1

.2k/Š
Q2k.cos.˛/; sin.˛//:

Now we fix k and estimate

p.˛/ WD P2k.sin.˛/; cos.˛// and q.˛/ WD Q2k.sin.˛/; cos.˛//:

By (4.3), we have that

�1 � �2 D
p
2 cos.˛/;

�3 � �1 D �
1
p
2

cos.˛/ �

p
3
p
2

sin.˛/ D
p
2 cos

�
˛ C

2�

3

�
;

�2 � �3 D �
1
p
2

cos.˛/C

p
3
p
2

sin.˛/ D
p
2 cos

�
˛ �

2�

3

�
:
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k P2k.X; Y / Q2k.X; Y /

1 �3X2 C Y 2 1

2 �9X4 � 18X2Y 2 C 7Y 4 �3X2 � 7Y 2

3 �
1
2 .27X

6 C 135X4Y 2 C 45X2Y 4 � 31Y 6/ 1
2 .9X

4 C 48X2Y 2 C 31Y 4/

Table 1. The polynomials P2k and Q2k for small values of k.

Thus, by (6.4),

p.˛/ D 2kC1.�1/k
�

cos.˛/2k � cos
�
˛ C

2�

3

�2k
� cos

�
˛ �

2�

3

�2k�
:

Taking derivatives, and noting that the terms inside the brackets are each at most 1, we
obtain

jp.˛/j � 6 � 2k ; jp0.˛/j � 12k2k and jp00.˛/j � 24k2 2k :

Denote

q.˛/ WD
p.˛/

3 sin2.˛/ � cos2.˛/
D

p.˛/

.
p
3 sin.˛/ � cos.˛//.

p
3 sin.˛/C cos.˛//

�

If both factors j
p
3 sin.˛/˙ cos.˛/j are at least 1=2, we have that

q.˛/ � 24 � 2k :

If not, then j˛ � �=6j < 1=5 or j˛C �=6j < 1=5. Without loss of generality, we are in the
first case. Then, by Taylor’s formula,ˇ̌̌ p.˛/

˛ � �=6
� p0.�=6/

ˇ̌̌
�
1

2

ˇ̌̌
˛ �

�

6

ˇ̌̌
sup jp00j �

1

10
24k22k ;

hence ˇ̌̌ p.˛/

˛ � �=6

ˇ̌̌
� 15k22k :

Furthermore, since j˛ � �=6j � 1=5,ˇ̌̌ ˛ � �=6

.
p
3 sin.˛/ � cos.˛//.

p
3 sin.˛/C cos.˛//

ˇ̌̌
� 2

ˇ̌̌ ˛ � �=6
p
3 sin.˛/ � cos.˛/

ˇ̌̌
�

1=5

sin.1=5/
< 2:

Multiplying the last two estimates, we conclude that jqj � 30k22k . We also directly com-
pute, for small k,

jQ4.sin.˛/; cos.˛//j D j�7 cos2.˛/ � 3 sin2.˛/j � 7

and

jQ6.sin.˛/; cos.˛//j D
1

2
j9 sin4.˛/C 48 sin2.˛/ cos2.˛/C 31 cos2.˛/j �

5125

312
< 17:
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Plugging in these estimates, we obtain

j .s; ˛/j �
7

24
s2 C

17

720
s4 C

1X
kD4

60k2

.2k/Š
.
p
2s/2k�2 �

7

24
s2 C

17

720
s4 C s6e

p
2s

and

j 0.s;˛/j �
14

24
sC

17

180
s3C

p
2

1X
kD4

60k2

.2k � 1/Š
.
p
2s/2k�3 �

14

24
sC

17

180
s4C 2s5e

p
2s;

as claimed.

Lemma 6.6. Let � be given by (4.3). Then for all 0 � s � 1=20, we have

.a.c4 C �/ � 1/�.
p
a.c4 C �// D �12s

2.3 sin2.˛/ � cos2.˛// log.s/

� 6s2.3 sin2.˛/ � cos2.˛// logj3 sin2.˛/ � cos2.˛/j

C 18 log 2 s2.3 sin2.˛/ � cos2.˛//CE;

with
jEj � �180s4 log s C 71s4:

Proof. By Lemma 6.1, it holds that

.x2 � 1/�.x/ D �6.x2 � 1/ logjx � 1j C 12 log.2/.x2 � 1/C .x2 � 1/E1
D �6.x2 � 1/ logjx2 � 1j C 18 log.2/.x2 � 1/C .x2 � 1/E1

C 6.x2 � 1/ log
�
1C

1

2
.x � 1/

�
;(6.5)

where
jE1j � �22 jx � 1j logjx � 1j C 23 jx � 1j:

Denote also the last term in (6.5) by E2. We set

x D
p
a.c4 C �/:

Lemma 6.5 implies that
jx � 1j � jx2 � 1j � 2s2:

Using this and monotonicity of r log r , we obtain

j.x2�1/E1j � jx
2
�1j.�22 jx�1j logjx�1jC23 jx�1j/(6.6)

� �176s4 log.s/C 32s4

and

(6.7) jE2j � 6 jx
2
� 1j

ˇ̌̌
log

�
1C

1

2
.x � 1/

�ˇ̌̌
� 24s4:
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By Lemma 6.5, it holds that

� 6.x2 � 1/ logjx2 � 1j

D �6s2.3 sin2.˛/ � cos2.˛//.1C  .s; ˛//.2 log.s/C log.3 sin2.˛/ � cos2.˛//
C log.1C  .s; ˛///

D �12s2 log.s/.3 sin2.˛/ � cos2.˛//(6.8)

� 6s2.3 sin2.˛/ � cos2.˛// logj3 sin2.˛/ � cos2.˛/j(6.9)

� 6s2.3 sin2.˛/ � cos2.˛// log.1C  .s; ˛///(6.10)

� 6s2 .s; ˛/.3 sin2.˛/ � cos2.˛//

� .2 log.s/C logj3 sin2.˛/ � cos2.˛/j C log.1C  .s; ˛///:(6.11)

The term (6.10) bounded by 18s2j .s; ˛/j � 6s4. The term (6.11) is bounded by

�18s2 log.s/j .s; ˛/j C 4s2j .s; ˛/j C 18s2 .s; ˛/2 � �6s4 log.s/C 2s4:

For the second term in (6.5), we have

18 log.2/.x2 � 1/

D 18 log.2/s2.3 sin2.˛/ � cos2.˛//C 18 log.2/s2.3 sin2.˛/ � cos2.˛// .s; ˛/;(6.12)

with the second term bounded by

27 log.2/s2 j .s; ˛/j � 9 log.2/s4:

Putting together the main terms (6.8), (6.9) and (6.12), and the estimates for the error
terms in (6.6), (6.7), (6.10), (6.11) and in (6.12), one obtains the lemma.

Lemma 6.7. For all ˛, it holds that

3X
jD1

�
3 sin2

�
˛C

2�j

3

�
� cos2

�
˛C

2�j

3

��
log

ˇ̌̌
3 sin2

�
˛C

2�j

3

�
� cos2

�
˛C

2�j

3

�ˇ̌̌
� 3 log.3/:

Proof. Let

aj D sin2
�
˛ C

2�j

3

�
�
1

3
cos2

�
˛ C

2�j

3

�
D
1

3
�
2

3
cos

�
2˛ C

4�j

3

�
:

It is easy to check that

(6.13) a1 C a2 C a3 D 1 and a21 C a
2
2 C a

2
3 D 1:

Defining

bj D
aj C aj�1

2
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(note that ajC3 D aj ), it follows that

b1 C b2 C b3 D 1 and b21 C b
2
2 C b

2
3 D 1=2;

hence b1; b2; b3 � 0. Using Jensen’s inequality, we deduce

3X
jD1

aj log.jaj j/ D
3X

jD1

bj log
�
jaj jjaj�1j

jaj�2j

�
� log

� 3X
jD1

bj
jaj jjaj�1j

jaj�2j

�
:

By (6.13), we have that

2ajaj�1 D .aj C aj�1/
2
� .a2j C a

2
j�1/D .1� aj�2/

2
� .1� a2j�2/D 2aj�2.aj�2 � 1/:

Thus, using again (6.13)

3X
jD1

bj
jaj jjaj�1j

jaj�2j
D

3X
jD1

bj .1 � aj�2/ D 1:

We conclude that
3X

jD1

3aj log.j3aj j/ D 3 log.3/C 3
3X

jD1

aj logjaj j � 3 log 3:

7. Discussion

7.1. Optimal value of "

An inspection of the above argument shows that Q.f / � 0 for all f 2V" as long as

(7.1) inf
�2H; j� j�"

1

2

4X
jD2

.a.� C cj /� 1/�
�p
a.� C cj /

�
� 18� sup

s�";˛2Œ0;2��

1

2C s  0.s;˛/
1C .s;˛/

�

(Non-rigorous) numerical computations suggest that this inequality holds up to "D 0:104.
The constant "0 in Corollary 1.3 could then be increased to 0:063.

7.2. Fourier coefficients of Q

In [1], some numerical observations on the Fourier coefficients

OB.k; l/ WD B.!
k1
1 !

k2
2 !

k3
3 ; !

l1
4 !

l2
5 !

l3
6 /

of B with k1 C k2 C k3 D l1 C l2 C l3 D 0 are discussed. Namely, they are very large
only when k is very close to l and when k21 C k

2
2 C k

2
3 � l

2
1 C l

2
2 C l

2
3 . We can explain

this using Lemma 3.2 as follows.
By Lemma 3.2 and since �0 D 1, for all f 2X0, the form B.f;f / can be expressed asZ
C

m.�/ jf .�/j2 dH2
C .�/C

Z
C 2
n.�/ ı.a.�/ � a.� 0//f .�/f .� 0/ dH2

C .�/ dH2
C .�

0/

for certain functions m and n.
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Figure 2. The left-hand side (solid) and the right-hand side (dashed) of (7.1).

The first term is a multiplier, hence it acts on the Fourier side by convolution with a
fixed bump function. This bump function decays at least like jk � l j�3, because the third
derivative of m is still integrable. This explains the large coefficients when k is close to l .

The Fourier coefficients of the second term are the Fourier coefficients of the measure

� WD n.�/ ı.a.�/ � a.� 0//

supported on the 3-manifold

M WD ¹.x; y/ 2 C 2 W a.x/ D a.y/º � R6:

The measure � has a smooth, bounded density with respect to the Hausdorff measure
on this manifold, except in the critical points of a. The Fourier transform of the parts
where the measure has a smooth, bounded density can be estimated using the method
of stationary phase, and are of lower order than the contribution of the critical points.
To explain what happens at a critical point (where detD2a ¤ 0), we choose coordinates
x1; x2; y1; y2 for C 2, such that the critical point of a is at 0. After a scaling in a and a
linear change of variables, either

(7.2) a.x/ D x21 C x
2
2 CO.jxj

3/ or a.x/ D x21 � x
2
2 CO.jxj

3/:

Thus, ignoring higher order terms,

ı.a.x/ � a.y// � ı.jxj2 � jyj2/ or ı.a.x/ � a.y// � ı.x21 � x
2
2 � y

2
1 C y

2
2/:

The Fourier transforms of these measures can be explicitly computed, in fact, they are up
to a constant factor their own Fourier transform. Now, a has one local maximum and two
local minima, which together with the above discussion explain why OB.k; l/ is very large
on the cone jkj2 D jl j2. The contribution of all other critical points is of smaller order,
since the weight n vanishes there.

This discussion can be turned into a rigorous proof that the Fourier coefficients of �
concentrate near the cone jkj2 D jl j2. However, we can only show that they concentrate
in, e.g.,

¹.k; l/ W jjkj � jl jj � C jkj1=2º;

and not in an O.1/ neighborhood of the cone, because of the higher order terms in (7.2).
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