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Iteration theory of noncommutative maps

Serban T. Belinschi and Eli Shamovich

Abstract. This note aims to study the iteration theory of noncommutative self-maps of bounded
matrix convex domains. We prove a version of the Denjoy–Wolff theorem for the row ball and the
maximal quantization of the unit ball of Cd . For more general bounded matrix convex sets, we prove
a version of Wolff’s theorem inspired by the results of Abate. Lastly, we use iteration and fixed point
theory to generalize the commutative results of Davidson, Ramsey, and Shalit to quotients of the free
semigroup algebra by WOT closed ideals.

1. Introduction

This note aims to study the iteration theory of noncommutative functions on matrix convex
sets and, more generally, noncommutative domains. Noncommutative analysis is a rapidly
growing area of research. The origins of noncommutative analysis can be traced back to
the works of Takesaki [38], Taylor [39, 40], and Voiculescu [44–46]. Though their moti-
vations varied greatly, the notion of a noncommutative (nc for short) function is apparent
in all of these works. Additional impetus to the field was given by results in noncommuta-
tive convexity with a view towards applications (see, for example, [20–22]). Arveson [9]
pioneered a different approach to noncommutative convexity. Arveson has generalized
the classical notion of Choquet boundary to the setting of operator systems. In particular,
Arveson’s extension theorem led Wittstock to prove an extension theorem on completely
bounded maps and introduce matrix convex sets [47, 48]. The reader should consult the
monograph [15] and the references therein for more information on noncommutative con-
vexity. A basic introduction to nc domains and functions is given in Section 2. We refer
the reader to the books [8, 24] for more details on nc function theory.

Classically, open convex domains in Cd are a primary example of hyperbolic spaces
in the sense of Kobayashi [25]. A fundamental result of Lempert [26, 27] states that
the Caratheodory and Kobayashi metrics on a convex bounded domain coincide (see
also [5, 33]). This hyperbolic metric is an essential tool in the study of iteration theory
and fixed points of holomorphic self-maps of convex domains [1–3,12,42,43]. Nc hyper-
bolic metrics were introduced by the first author and Vinnikov in [13]. The definition and
basic properties of the nc Lempert function and hyperbolic metrics appear in Section 3.

Mathematics Subject Classification 2020: 46L52 (primary); 46L07, 47L25 (secondary).
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A particularly nice example of a convex set is the unit ball; in the noncommutative
case, it is the row ball. Popescu has extensively studied nc function theory on the row
ball (see, for example, [28–32]). Davidson and Pitts [16–18] have studied the free semi-
group algebra and, in doing so, studied nc bounded analytic functions on the row ball
(see also [35, 36]). In particular, Popescu proved a noncommutative version of Wolff’s
theorem for the row ball [32, Theorem 3.1]. A noncommutative version of a fixed point
theorem of Rudin [34] and Hervé [23] was obtained by the second author in [37]. The
primary motivation for the proof of the latter fixed point theorem was the classification of
quotients of the free semigroup algebra by WOT closed ideals up to completely isometric
isomorphism [35, 36].

In Section 4, we prove a version of the Denjoy–Wolff theorem for the row ball (The-
orem 4.4) and the maximal quantization of the unit ball Bd � Cd (Corollary 4.8). In
particular, this answers a question raised by Popescu in [32] on the Denjoy–Wolff theo-
rem for the row ball. One of the key ingredients of the proof of these results are forms
of the nc maximum modulus principle. Popescu obtained one version of the maximum
modulus principle for the row ball [28, Theorem 3.3], and a different version (more appli-
cable to the problem at hand) was obtained in [35, Lemma 6.11]. In this paper, we obtain
a maximum modulus principle for the maximal quantization of Bd (see Theorem 4.7). It
is interesting whether such a strong form of maximum modulus principle is available for
every quantization of the unit ball.

Section 5 contains an nc version of the classical Vigué and Bedford theorems on iter-
ations of holomorphic functions (Theorems 5.1 and 5.4). We use these results to obtain an
extension of [37, Theorem 4.1] that is the full nc version of a result of Davidson, Ramsey,
and Shalit [19, Theorem 4.4].

Theorem A (Theorem 5.7). Let V � Bd and W � Be be two nc analytic varieties. If
H1.V/ and H1.W/ are completely isometrically isomorphic, then there exists k 2 N
and an automorphism F WBk ! Bk , such that V;W � Bk and F maps V onto W.

Lastly, in Section 6, we provide an nc version of Wolff’s theorem in the spirit of the
result of Abate [1]. Namely, we define nc analogs of big and small horospheres centered
at a scalar point on the boundary of a bounded matrix convex set and prove that iterations
of an nc analytic self-map send the small one into the big one.

2. Noncommutative functions and domains

Let E be a vector space, we set M.E/ D
F1
nD1Mn.E/, where Mn.E/ D Mn ˝ E. We

write Md DM.Cd / and treat Md as the set of all d -tuples of matrices of all sizes. Note
that GLn acts on Mn.E/ by S � .A˝ �/ D .S�1AS/˝ �. We will denote this action for
X 2Mn.E/ simply by S�1XS .
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Additionally, for X 2Mn.E/ and Y 2Mm.E/ we will write

X˚ Y D
�

X 0

0 Y

�
2MnCm.E/:

A subset � �M.E/ is called an nc set, if for every X;Y 2 �, X˚ Y 2 �.
If E is an operator space, then we set

BE D

1G
nD1

¹X 2Mn.E/ j kXkn < 1º:

We endow Cd with the row norm and write Bd for BCd . We will write Bd D Bd .1/ for
the unit ball of Cd and D for the disc. A subset � �M.E/ will be called an nc domain
if � is an nc set, level-wise open, and invariant under unitary similarities.

An nc set��M.E/ is called matrix convex if, for every X 2�.n/ and V WCm!Cn

an isometry, we have that V �XV 2 �.m/.
Let � � M.E/ be an nc domain. We say that a function f W� ! M.F / is an nc

function if

• f is graded, i.e., f .�.n// �Mn.F /, for every n 2 N. We write fn D f j�.n/;

• f respects direct sums, i.e., f .X˚ Y/ D f .X/˚ f .Y/;
• f respects similarities, for every n 2 N, every X 2 �.n/, and every S 2 GLn, if

S�1XS 2 �.n/, then f .S�1XS/ D S�1f .X/S .

It is a remarkable result of Kalyuzhnyi Verbovetskyi and Vinnikov that a locally bounded
nc function is both Gateaux and Frechet differentiable (see also [6]). Hence, we will say an
analytic nc function when we mean locally bounded. The key to proving this result is the
nc difference-differential operator. Namely, for every X 2 �.n/, Y 2 �.m/, there exists a
linear map �f .X;Y/WMn;m ˝E !Mn;m ˝E, such that for every Z 2Mn;m ˝E such
that

�
X Z
0 Y

�
2 �.nCm/,

f

��
X Z
0 Y

��
D

�
f .X/ �f .X;Y/.Z/
0 f .Y/

�
:

In fact, �f .X;X/ is the Frechet derivative of a locally bounded nc function at X. More-
over, we have the identity

�f .X;Y/.X � Y/ D f .X/ � f .Y/:

For the properties of the nc difference-differential operator, we refer the reader to [24].
The nc sets that we will focus on are described in the following definition.

Definition 2.1. Let H , K be a Hilbert space. Let � � M.E/ be an nc domain and
QW�!M.B.H ;K// be an nc analytic function. We define

DQ D ¹Z 2 � j Q.Z/Q.Z/� < I º:
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Remark 2.2. For X 2 �.n/, Y 2 �.m/, and Z 2 Mn;m ˝ B.H /, define the nc affine
kernel G.X;Y/.Z/ D Z �Q.X/ZQ.Y�/�. Then, DQ coincides with a generalized non-
commutative ball, as defined in [13]. Domains of the form DQ were originally defined by
Agler and McCarthy for Q, a matrix of nc polynomials (see, for example, [6, 7]). In this
form, the sets DQ first appeared in the works of Ball, Marx, and Vinnikov [10, 11].

In a similar fashion, we have a generalized analog of the half-plane, which, by the
Effros–Winkler separation theorem, includes all matrix convex sets.

Definition 2.3. Let H be a Hilbert space. Let��M.E/ be an nc domain invariant under
pointwise conjugation and let LW�!M.B.H // be an injective nc analytic function. We
define HL D ¹Z 2 � j Re.L.Z// < I º. Following [11], we also have a representation
� D DQ, where Q is obtained from L using the Cayley transform.

Note that, as observed by Taylor in [39, Section 6], for every nc domain� �Md , the
algebra T .�/ of holomorphic nc functions on � is a nuclear Frechet algebra. The topol-
ogy on T .�/ is the topology of uniform convergence on levelwise compacta. Note that
the map that takes an nc function to its restriction to the various levels gives a continuous
embedding T .�/ ,!

Q1
nD1 O.�.n//˝Mn, where we write O.�.n// for the algebra of

holomorphic functions on �.n/ with the topology of uniform convergence on compacta.
Since O.�.n//˝Mn is nuclear for every n2N, the product is also nuclear by [41, Propo-
sition 50.1]. Moreover, since the conditions of respecting direct sums and similarities are
closed, we immediately see that T .�/ is a closed subspace and is also nuclear. Hence, by
[41, Proposition 50.2], every bounded subset of a nuclear space is precompact, and thus,
in particular, in a Frechet space, every bounded sequence has a convergent subsequence.
In other words, we can apply Montel’s theorem to sequences of nc functions and maps.
The obtained convergence is, of course, uniform convergence on compacta on each level.
There are stronger versions of Montel’s theorem (see, for example, [8, Theorem 13.14]
and [28, Theorem 5.2]). However, this is the one that will be used almost exclusively
throughout this paper. We will apply Popescu’s version of Montel’s theorem for the row
ball [28, Theorem 5.2] to obtain a stronger Denjpy–Wolff theorem in this setting.

3. Noncommutative hyperbolic metrics

Noncommutative hyperbolic metrics and the nc Lempert function were introduced by the
first author and Vinnikov in [13]. For a contraction T 2 B.H ;K/, we will write DT D
1 � T T � and DT � D 1 � T �T for the defect operators. The nc Lempert function for an
nc domain � �M.E/ is defined by

ı.X;Y/.Z/ D
�

sup
²
t 2 Œ0;1�

ˇ̌̌̌
for all s 2 Œ0; t/;

�
X sZ
0 Y

�
2 �

³��1
:
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Here X 2 �.n/, Y 2 �.m/, and Z 2Mn;m ˝E. We also set, for X;Y 2 �.n/,

Qı.X;Y/ D ı.X;Y/.X � Y/:

In the case of DQ, we have a special form for the nc Lempert function, which is a particular
case of the equality appearing in [13, equation (21)].

Lemma 3.1. For X 2 DQ.n/, Y 2 DQ.m/, and Z 2Mn;m ˝E we have

ı.X;Y/.Z/ D kD�1=2
Q.X/�Q.X;Y/.Z/D

�1=2

Q.Y/�k;

Qı.X;Y/ D kD�1=2
Q.X/.Q.X/ �Q.Y//D

�1=2

Q.Y/�k:

Proof. Let t > 0 be such that
�

X tZ
0 Y

�
2 DQ. Then�

Q.X/ t�Q.X;Y/.Z/
0 Q.Y/

��
Q.X/� 0

t�Q.X;Y/.Z/� Q.Y/�

�
< I:

Multiplying the matrices and applying Schur’s complement, we see that

DQ.X/ � t
2�Q.X;Y/.Z/�Q.X;Y/.Z/�

> t2�Q.X;Y/.Z/Q.Y/�D�1Q.Y/Q.Y/�Q.X;Y/.Z/
�:

Let T 2 B.H ;K/ be a strict row contraction. WritingD�1T as a power series in T T �, we
get that T �D�1T T D D�1T � � I . Hence,

DQ.X/ > t
2�Q.X;Y/.Z/D�1Q.Y/��Q.X;Y/.Z/

�:

Thus,
1

t2
> D

�1=2

Q.X/�Q.X;Y/.Z/D
�1
Q.Y/��Q.X;Y/.Z/

�D
�1=2

Q.X/ :

Running the argument back, we see that this condition is necessary and sufficient. Hence,
we conclude that

ı.X;Y/.Z/ D kD�1=2
Q.X/�Q.X;Y/.Z/D

�1=2

Q.Y/�k:

The second equality follows from the nc difference-differential formula given in [24, The-
orem 2.10].

We have a similar result for generalized half-planes.

Lemma 3.2. For X 2 HL.n/, Y 2 HL.m/, and Z 2Mn;m ˝Cd we have

ı.X;Y/.Z/ D
1

2
k.I � Re.L.X///�1=2�L.X;Y/.Z/.I � Re.L.Y///�1=2k;

Qı.X;Y/ D
1

2
k.I � Re.L.X///�1=2.L.X/ � L.Y//.I � Re.L.Y///�1=2k:
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Remark 3.3. As stated in [13], Qı is symmetric. We include a brief proof of this fact for
the sake of completeness. Let � be a unitarily invariant nc domain and let t 2

�
0; �

2

�
. For

every X;Y 2 �.n/, we have�
cos t � sin t
� sin t � cos t

��
Y cos t

sin t .Y � X/
0 X

��
cos t � sin t
� sin t � cos t

�
D

�
X cos t

sin t .X � Y/
0 Y

�
:

Hence, Qı.X;Y/ D Qı.Y;X/.

We record the following simple observation, that is, however, using the power of the
nc assumption (see also [4, Theorem 5]).

Lemma 3.4. Let � �M.E/ be a bounded matrix convex nc domain that contains 0. Let
f W�! � be an nc analytic map. If there exists 0 < r < 1, such that f .�/ � r�, then
f has a unique fixed point in �.1/. Namely, there exists X 2 �.1/, such that f .X/ D X
and the only fixed points of f are ampliations of X.

Proof. Let fn D f j�.n/. By the Earle–Hamilton theorem, fnW�.n/!�.n/ has a unique
fixed point. In particular, let X 2 �.1/ be the unique fixed point on this level, then X˚n is
fixed by fn since f respects direct sums. Thus, by uniqueness, the fixed point on level n
is X˚n.

Lemma 3.5. Let � D DQ. Then, for every n, �X.Z/ D ı.X;X/.Z/ is a seminorm. Fur-
thermore, �X is a norm if and only if �Q.X;X/ is injective.

Proof. Obvious from Lemma 3.1 and the linearity of �Q.X;X/.

For every X 2 DQ.n/, we can define a collection of seminorms on Mk.Mn.E//, via
�k;X.Z/ D ı.Ik ˝ X; Ik ˝ X/.Z/.

Proposition 3.6. Let Q be such that, for some X 2 DQ.n/, �Q.X;X/ is injective. Then
�k;X form an operator space structure on Mn.E/.

Proof. By our assumption and the properties of the nc derivative, �Q.Ik ˝ X; Ik ˝ X/
is injective for every k 2 N. Thus, each �k is a norm by the previous lemma. Hence, we
will verify Ruan’s axioms.

Let Z 2Mkn.E/ and W 2M`n.E/. By the properties of ı, we have that

�kC`.Z˚W/ D ı.IkC` ˝ X; IkC` ˝ X/.Z˚W/ D max¹�k.Z/; �`.W/º:

Now, let ˛ 2M`;k , ˇ 2Mk;`, and Z 2Mk.Mn.E//. Write I D IMn.E/ and observe
that, since �Q.X;X/ is linear and satisfies, for every m 2 N, �Q.Im ˝ X; Im ˝ X/ D
IMm ˝�Q.X;X/, we get that

�Q.I` ˝ X; I` ˝ X/..˛ ˝ I /Z.ˇ ˝ I // D .˛ ˝ I /�Q.Ik ˝ X; Ik ˝ X/.Z/.ˇ ˝ I /:
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Hence,
�`;X..˛ ˝ I /Z.ˇ ˝ I // � k˛kkˇk�k;X.Z/:

This completes the proof.

Remark 3.7. If QWM.E/!M.B.H ;K// is an injective analytic nc function, it is not
hard to check that �Q.X;X/ is injective for every X 2 M.E/. Indeed, for every Z 2
Mn.E/, such that �Q.X;X/.Z/ D 0,

Q

��
X Z
0 X

��
D

�
Q.X/ 0

0 Q.X/

�
D Q.X˚ X/:

Hence, for every point X2DQ, we have an operator space structure on the “tangent space”
at X.

Corollary 3.8. Let f WDQ ! DP be an nc function. Then, for every X 2 DQ, the linear
map �f .X;X/ is a complete contraction.

Proof. The claim follows immediately from [13, Proposition 3.2] and the properties of ı
and the nc difference-differential operator.

Recall from [13] that there are several ways to define distances on an nc domain �
using Qı. The simplest one is a level-dependent distance. Let X;Y 2 �.n/; we set

Qd�.X;Y/ D inf
° mX
kD1

Qı.Zk�1;Zk/
ˇ̌̌
m 2 N;X D Z0;Z1; : : : ;Zm D Y 2 �.n/

±
:

One can remove the dependence on levels by altering the definition slightly

Qd�;1.X;Y/ D inf
° mX
kD1

Qı.Zk�1;Zk/
ˇ̌̌

m; ` 2 N; I` ˝ X D Z0;Z1; : : : ;Zm D I` ˝ Y 2 �.`n/
±
:

Lastly, one can define a distance by measuring the lengths of paths connecting the two
points:

d�.X;Y/ D inf
² 1Z
0

ı.
.t/; 
.t//.
 0.t//dt

ˇ̌̌̌

 2 C 1pw.Œ0; 1�;�.n//

³
;

d�;1.X;Y/ D inf
² 1Z
0

ı.
.t/; 
.t//.
 0.t//dt

ˇ̌̌̌

 2 C 1pw.Œ0; 1�;�.`n//; ` 2 N

³
:

Here C 1pw.Œ0; 1�; �.n// stands for the piecewise continuously differentiable paths in
�.n/. Namely, 
 W Œ0; 1�! �.n/, such that there exists finitely many 0 D t1 < t2 < � � � <
tk D 1, such that f is C 1 on every open segment .ti ; tiC1/ and the one-sided derivatives
exist at all the ti .
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Lemma 3.9. Let � � M.E/ be an open bounded matrix convex nc domain. Let both
V WCk ! Cn andW WC`! Cm be isometries. Then, for every X 2�.n/, Y 2�.m/, and
Z 2Mn;m.E/, we have

ı.V �XV;W �YW /.V �ZW / � ı.X;Y/.Z/:

In particular, if X;Y 2 �.n/, then, for every isometry V WCk ! Cn,

Qı.V �XV; V �YV / � Qı.X;Y/:

Proof. Note that for t > 0�
V � 0

0 W �

��
X tZ
0 Y

��
V 0

0 W

�
D

�
V �XV tV �ZW
0 W �YW

�
:

Hence, if
�

X tZ
0 Y

�
2 �.nCm/, then, since � is matrix convex and V ˚W is an isometry,

we conclude that
�
V �XV tV �ZW
0 W �YW

�
2 �.nCm/. Hence,

A D

²
t 2 Œ0;1�

ˇ̌̌̌ �
X sZ
0 Y

�
2 �.nCm/; for all s 2 Œ0; t/

³
�

²
t 2 Œ0;1�

ˇ̌̌̌ �
V �XV sV �ZW
0 W �YW

�
2 �.nCm/; for all s 2 Œ0; t/

³
D B:

Since ı.V �XV;W �YW /.V �ZW / D .supB/�1 and ı.X;Y/.Z/ D .supA/�1, we get the
desired inequality.

The second inequality follows immediately from the first.

Corollary 3.10. Let � be an open matrix convex domain and let X;Y 2 �.n/, then

Qd�.X;Y/ D Qd�;1.X;Y/; d�.X;Y/ D d�;1.X;Y/:

Proof. By definition Qd�;1.X;Y/� Qd�.X;Y/ and d�;1.X;Y/� d�.X;Y/ (see also [13]).
Now, let � > 0 be arbitrary. We can find `;m2N and I`˝XDZ0;Z1; : : : ;ZmD I`˝Y2
�.`n/, such that

mX
kD1

Qı.Zk�1;Zk/ < Qd�;1.X;Y/C �:

Let V WCn ! C`n be the isometry that embeds Cn as the subspace spanned by the first n
standard basis vectors. Then V �Z0V DX, V �ZmV DY, and, since� is matrix convex for
every 1� k �m� 1, V �ZkV 2�.n/. By Lemma 3.9, we have that, for every 1� k �m,
Qı.V �Zk�1V; V �ZkV / � Qı.Zk�1;Zk/ and thus

mX
kD1

Qı.V �Zk�1V; V �ZkV / < Qd�;1.X;Y/C �:

This proves that Qd�;1.X;Y/ D Qd�.X;Y/.
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Similarly, let 
 2 C 1pw.Œ0; 1�;�.`n// be such that 
.0/D I` ˝X, 
.1/D I` ˝Y, and

1Z
0

ı.
.t/; 
.t//.
 0.t// < d�;1.X;Y/C �:

Let V be as above and set ˇ D V �
V 2 C 1pw.Œ0; 1�; �.n//. Then, ˇ.0/ D X, ˇ.1/ D Y,
and ˇ0.t/ D V �
 0.t/V . Thus, by Lemma 3.9,

1Z
0

ı.ˇ.t/; ˇ.t//.ˇ0.t// �

1Z
0

ı.
.t/; 
.t//.
 0.t// < d�;1.X;Y/C �:

Thus, d�;1.X;Y/ D d�.X;Y/.

Lemma 3.11. Let� be an open matrix convex domain. Let X;Y 2�.n/ and A 2Mn.E/.
Then, for every 0 < t < 1,

ı.tXC .1 � t /Y; tXC .1 � t /Y/.A/ �
1

2
p
t .1 � t /

max¹ı.X;Y/.A/; ı.Y;X/.A/º;

ı.tXC .1 � t /Y; tXC .1 � t /Y/.A/ � max¹ı.X;X/.A/; ı.Y;Y/.A/º:

Proof. Let us define, for every 0 < t < 1, an isometry Vt WCn ! C2n:

Vt D

� p
tIn

p
1 � tIn

�
:

Then
tXC .1 � t /Y D V �t .X˚ Y/Vt :

Applying Lemma 3.9 and [13, Lemma 3.5], we get

ı.V �t .X˚ Y/Vt ; V �t .X˚ Y/Vt /
�

1

2
p
t .1 � t /

V �t

�
0 A
A 0

�
Vt

�
�

1

2
p
t .1 � t /

ı.X˚ Y;X˚ Y/
��

0 A
A 0

��
D

1

2
p
t .1 � t /

max¹ı.X;Y/.A/; ı.Y;X/.A/º:

The proof of the second inequality is identical. We only note that A D V �t .A˚ A/Vt .

Theorem 3.12. Let� be an open matrix convex domain. Then for every X;Y 2�.n/, we
have that

Qd�.X;Y/ � d�.X;Y/ � � Qd�.X;Y/:

In other words, the metrics d� and Qd� are equivalent.
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Proof. By [13], Qd�.X;Y/ � d�.X;Y/. Now, let � > 0 and find X D Z0;Z1; : : : ;Zm D
Y 2 �.n/, such that

mX
kD1

Qı.Zk�1;Zk/ < Qd�.X;Y/C
�

�
:

Now, consider the paths ˇk.t/ D tZk C .1 � t /Zk�1 and concatenate them to obtain a
piecewise smooth path ˇW Œ0;1�!�.n/, such that ˇ.0/DX and ˇ.1/DY. By Lemma 3.11,
we have that

1Z
0

ı.ˇk.t/; ˇk.t//.ˇ
0
k.t//dt �

Qı.Zk�1;Zk/
1Z
0

dt

2
p
t .1 � t /

D � Qı.Zk�1;Zk/:

Thus,
1Z
0

ı.ˇ.t/; ˇ.t//.ˇ0.t//dt < � Qd�.X;Y/C �:

Since � was arbitrary, we get the result.

Now, we collect a few useful properties of the distance d�.

Proposition 3.13. Let � be a uniformly bounded and open matrix convex domain and
X;Y;Z;W 2 �.n/. Then

(i) for V 2 U.n/ a unitary, we have d�.V �XV; V �YV / D d�.X;Y/;
(ii) if V WCk ! Cn is an isometry, then d�.V �XV; V �YV / � d�.X;Y/;
(iii) d�.X˚ Y;Z˚W/ � max¹d�.X;Z/; d�.Y;W/º.

Proof. Given � > 0, let 
 W Œ0; 1�! �.n/ be a piecewise continuously differentiable path,
such that 
.0/ D X, 
.1/ D Y, and

1Z
0

ı.
.t/; 
.t//.
 0.t//dt < d�.X;Y/C �:

Now, note that ı.V �
.t/V; V �
.t/V /.V �
 0.t/V / D ı.
.t/; 
.t//.
 0.t// by [13]. Thus,
taking the path V �
V , we get that d�.V �XV; V �YV / < d�.X;Y/C �. Since � > 0 was
arbitrary, we get that d�.V �XV; V �YV / � d�.X;Y/. Since AdV � is invertible, we get
the converse inequality.

The second item follows immediately from Lemma 3.9. For the third item, let V WCn!

C2n be an isometry that embeds Cn as the span of the first n standard basis vectors. Then

d�.X;Z/ D d�.V �.X˚ Y/V; V �.Z˚W/V / � d�.X˚ Y;Z˚W/:

Similarly d�.Y;W/ � d�.X˚ Y;Z˚W/.
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4. Noncommutative Denjoy–Wolff theorems

Let f WD ! D be a holomorphic function that is not an automorphism and has no fixed
points. In order to prove the classical Denjoy–Wolff theorem, one applies the Montel
theorem to obtain convergent subsequences of the sequence fn of iterations of f . We can
then split the rest of the proof into two pieces. In the first part, we apply the maximum
modulus principle to show that a partial limit of the sequence fn is either constant or maps
D into itself. Then one applies the Wolff lemma to show that, in the constant case, the value
is the Wolff point of f and works to rule out the second option. This observation leads us
to try and extend the Denjoy–Wolff-type result of Abate and Raissy to the noncommutative
setting.

Definition 4.1. Let� �Md be an nc domain. We will say that� has a simple nc bound-
ary if, for every nc holomorphic function f W�0 �Mk !

x�, if f .�0/\ @� ¤ ;, then f
is constant.

Example 4.2. By the maximum modulus principle [35, Lemma 6.1], the row ball Bd has
a simple nc boundary.

The following is an extension of the result of Abate and Raissy [3, Theorem 2] to the
noncommutative setting.

Theorem 4.3. Let � �Md be a uniformly bounded matrix convex domain with a simple
nc boundary. Assume that �.1/ is strictly convex. Let f W�! � be an nc map with no
fixed points. Then there exists � 2 @�.1/, such that the sequence of iterates f ın converges
to the constant function �, where

f ın D f ı f ı � � � ı f„ ƒ‚ …
n times

:

Proof. By [3, Theorem 2], the sequence of iterates .f ın/1 D f ın1 converges to the con-
stant function �. Now, applying Montel’s theorem to f ın, we know that the sequence has
convergent subsequences. Let f ınk be a convergent subsequence and g its limit. Since
g1 D �, by the fact that � has a simple nc boundary, g is constant and equals �. Hence,
every convergent subsequence converges to the same function, and, thus, f ın converges
to � uniformly on every compact.

Theorem 4.4. Let f WBd !Bd be an nc function without fixed points, then the sequence
of iterates f ın converges uniformly on subball rBd to the constant function �, where � is
the Denjoy–Wolff point of f1 D f jBd .1/.

Proof. By Popescu’s Montel theorem [28, Theorem 5.2], the sequence f ın has subse-
quences that converge uniformly on subballs. Hence, we can argue as above, but the
convergence is on subballs.
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4.1. Maximal quantization of the unit ball

Let K � Cd be a bounded open convex set and assume for simplicity that 0 2 K. By the
Hahn–Banach separation theorem, for every z 2 Cd nK, there exists w 2 Cd and s 2 R,
such that, for every u 2 K, Rehu; wi < s � Rehz; wi. Since necessarily s > 0, we may
replace w by 1

s
w and set s D 1. Hence, K can be identified as an intersection of open

half-planes. Let us writeKı D ¹w 2 Cd j for all u 2 K;Rehu;wi � 1º. As in [14] (in the
compact case), we define the maximal matrix convex set that contains K by Max.K/ DF
n2N Max.K/.n/, where

Max.K/.n/ D
°

Z 2Md .n/ j for all w 2 Kı;Re
� dX
jD1

wjZj

�
< 1

±
:

From now on, will focus on Max.Bd /. Let Max.Bd / be the levelwise closure of Max.Bd /.
Note that by continuity of the functionals, Max.Bd / � Max.Bd /. Conversely, if Z 2
Max.Bd /, then for every 0 < r < 1, rZ 2 Max.Bd / and, thus, these sets coincide. We
aim to show that the Denjoy–Wolff theorem holds for Max.Bd /. One of the key ingredi-
ents is the maximum modulus principle. We need some preparation to prove a version of
the maximum modulus principle for Max.Bd /.

Lemma 4.5. Let � �Md be an open nc set and f W�!M1 be a locally bounded nc
function. If Ref .W/ D I for all W 2 �, then f is constant.

Proof. Since f is levelwise holomorphic and �f .W;W/.Z/ is the directional derivative
at W, it suffices to prove that, for every W 2 � and Z 2Md , �f .W;W/.Z/ D 0. Note
that, since � is open, there exists t > 0, such that

�
W tZ
0 W

�
2 �. Hence,�

I 0

0 I

�
D Ref

��
W Z
0 W

��
D

�
I 1

2
�f .W;W/.Z/

1
2
�f .W;W/.Z/� I

�
:

Lemma 4.6. Let X 2 Max.Bd / and assume that X1 D I . Then X2 D � � � D Xd D 0.

Proof. Since Max.Bd / is matrix convex, for every unit vector u 2 Cn, we have that
u�Xu D .1; hX2u; ui; : : : ; hXdu; ui/ 2 Bd . Which implies that the numerical ranges of
X2; : : : ; Xd are ¹0º and thus these matrices are zero.

The following theorem is a version of the maximum modulus from [35] for the set
Max.Bd /.

Theorem 4.7. Let��Mk be an open unitarily-invariant nc set and let f W�!Max.Bd /
be a locally bounded holomorphic function. If, for some W0 2 �, f .W0/ 2 @Max.Bd /,
then f is constant.
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Proof. Assume W0 2�.n/. Since f .W0/2 @Max.Bd /, there exists �2Cd with k�kD1,
such that Re

�Pd
jD1 �jfj .W0/

�
has 1 in its spectrum. Set g.W/ D

Pd
jD1 �jfj .W/ and

let u be a unit vector, such that Reg.W0/u D u. Let k 2 N and define

'k W�.nk/! R

by
'k.W/ D Rehg.W/u.k/; u.k/i;

where

u.k/ D
1
p
k

0B@u:::
u

1CA 2 Cnk :

Since Re g.W/ � I for all W 2 �, we have that 'k.W/ � 1. Moreover, by assump-
tion, 'k.Ik ˝W0/ D 1. Since 'k is pluriharmonic, we can apply the classical maxi-
mum modulus to deduce that 'k is constant. Hence, for every W 2 �.nk/, we have that
Rehg.W/u; ui D 1. By unitary invariance of �, we have that, for every unitary nk � nk
matrix V ,

Rehg.W/V u.k/; V u.k/i D Rehg.V �WV /u.k/; u.k/i D 1:

In particular, the numerical range of Reg.W/ is the singleton 1, i.e., Reg.W/ D I . Now,
we can apply Lemma 4.5 to deduce that the restriction of g to levels that are multiples of n
is constant. However, for everym not divisible by n, we have that�.m/ can be embedded
into �.nm/ via direct sums, and thus g is constant.

Now, note that if U 2 Md is a unitary, then, for W 2 Max.Bd /, we have U.W/ 2

Max.Bd /. Hence, applying a unitary, we may assume that � is the first vector of the
standard basis. Hence, we have that f1 D 1. By Lemma 4.6, we have that f2 D � � � D
fd D 0.

Corollary 4.8. Let f WMax.Bd /!Max.Bd / be an nc map without fixed points. Then, the
sequence of iterates of f converges to the constant function �, where � is the Denjoy–Wolff
point of f1.

Proof. The above theorem shows that Max.Bd / has a simple nc boundary. Thus, the result
is a consequence of Theorem 4.3

Question 4.9. Does every quantization of Bd have a simple nc boundary?

5. Noncommutative Vigué and Bedford theorems

In [43], Vigué has proved that, for a bounded convex domain U � Cd , the set of fixed
points of an analytic self-map is a smooth analytic subvariety. Moreover, a smooth analytic
subvariety V � U is the set of fixed points of some analytic self-map if and only if V is
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a holomorphic retract of U , i.e., there exists  WU ! V analytic, such that  jV D idV .
Our goal here is to show that Vigué’s methods extend almost verbatim to the setting of
bounded matrix convex sets.

By [2, Proposition 2.1.8] and [2, Corollary 2.1.11], every bounded convex domain
W � Cn is both taut and tautly embedded in Cn, Hence, given a sequence of maps
fnWW ! W that converges uniformly on compacta to f , we have that f .W / � W or
f .W / � @W .

Note that, if � � Md is matrix convex, then, for a decomposable point in �, the
restriction to the invariant subspaces and the compression to coinvariant subspaces are
in�. We say that an nc subset„ �� is (relatively) bifull if it is closed under similarities,
restrictions to invariant subspaces, and compressions to coinvariant subspaces (see [11]).
To be more precise, “closed under similarities” means that, for every n 2 N, X 2 „.n/,
and every S 2 GLn.C/ such that S�1XS 2 �, we have that S�1XS 2 „.

Theorem 5.1 (Noncommutative Vigué’s theorem). Let � � Md be a bounded matrix
convex set. Let V � � be an nc relatively bifull subset such that, for every n 2 N, V.n/

is a smooth analytic subvariety of �.n/. Then, V is the fixed point set of an nc map
f W�! � if and only if V is the image on an nc holomorphic retraction, i.e., there exists
 W�! �, such that  ı  D  and  .�/ D V.

Proof. Just like classically, one direction is easy. If there exists an nc holomorphic retrac-
tion  W� ! V, then V is the fixed point set of  . Moreover, every fixed point set is
level-wise smooth by the classical theorem of Vigué and is bifull by basic properties of nc
functions.

For the second direction, we can apply Vigué’s proof of his theorem and only verify
small details. Let f be an nc map, so V is the fixed point set of f . Write f0 D idU
and fn D f ı fn�1, for n 2 N. Consider the sequence 'm D 1

m

Pm�1
kD0 fk . Since each

�.n/ is convex, each 'm is a self-map of �. Passing to a subsequence, we may assume
that 'm converges level-wise on compacta to an nc function '. The fixed point set of '
contains V. Again, since each �.n/ is convex and bounded, it is taut, and thus ' is also
a self-map of �. Now, let  be a partial limit of the sequence of iterates of '. Refining
the subsequence, if necessary, we see that  is a retraction. Arguing as in the proof of
[43, Theorem 6.5], we see that level-wise  n maps �.n/ into V.n/ and we are done.

Remark 5.2. One can also argue level-wise instead of discussing nuclearity. Since on
each level the Montel theorem holds, if we have a sequence of nc functions fnW�! �,
then we can choose a subsequence f

n
.1/
k

that converges on the first level and a subsequence

of it f
n
.2/
k

that converges on the second level and so on. Now, we set gk D fn.k/
k

, and this
sequence converges on all levels. The limit is, of course, an nc function.

Corollary 5.3. Let � be a bounded matrix convex set, and let f W�! � be a nc map.
Then the fixed point set of f contains scalar points. In other words, if f has no fixed
points on the first level, then f has no fixed points.
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Proof. Let V be the collection of fixed points of f . By the nc Vigué theorem, we have
that V is the image of some nc holomorphic retraction. Since nc maps are graded, we have
that V.1/ ¤ ;.

In [12], Bedford proved an important dichotomy for converging iterates of self-maps
of a taut domain. The following result is a straightforward generalization of Bedford’s
theorem to the setting of uniformly bounded matrix convex domains.

Theorem 5.4 (Noncommutative Bedford theorem). Let��Md be a uniformly bounded
matrix convex domain. Let f W�! � be an nc self-map. Let

f ın D f ı f ı � � � ı f„ ƒ‚ …
n times

be the sequence of iterates of f . Suppose the sequence f ınk converges to g level-wise on
compacta. In that case, we have that either for every n 2 N, g.�/ � @� or there exists
an nc analytic subvariety of V � �, an nc automorphism 'WV! V and a holomorphic
retraction  W�! V, such that g D ' ı  .

Proof. Due to tautness on every level, gn.�.n// is either a subset of @�.n/ or of �.n/.
Now, assume that there exists n0 2 N, such that gn0.�.n0// � @�.n0/. Let X 2 �.1/,
then In0 ˝ g.X/ D g.In0 ˝ X/ 2 @�.n0/. Since � is closed under direct sums and
direct summands, g.X/ 2 @�.1/. By tautness, g.�.1// � @�.1/. Thus, for every n 2 N,
In ˝ g.X/ 2 @�.n/ and applying tautness again we conclude that gn.�.n// � @�.n/.

Assume that g.�/ � �. The proof proceeds as the proof of [12, Theorem 1.1]. We
record the proof here for the sake of completeness. Passing to subsequences, we may
assume that mk D nkC1 � nk and `k D nkC1 � 2nk are strictly increasing, and the
sequences f ımk and f ı`k converge (using the fact that the space of all level-wise holo-
morphic nc functions is a Montel space). Denote

lim
k!1

f ımk D  ; lim
k!1

f ı`k D �:

Since f ımk ı f ınk D f ınkC1 D f ınk ı f ımk , we have that ı gD gD g ı . Similarly,
� ı g D  D g ı � . In particular,  fixes the image of g. Applying the argument above,
we conclude that  .�/ � � and �.�/ � �. Set V D Fix. / and note that g.�/ � V.
For every n 2 N and every Z 2 �.n/, we have kerDgn.Z/ D kerD n.Z/ since by the
chain rule Dgn. n.Z//D n.Z/ D Dgn.Z/ and D n.Z/ D D�n.gn.Z//Dgn.Z/. Note
that W.n/ D  �1n .V.n// is an analytic subvariety of �.n/ cut out by  . .Z// �  .Z/.
The dimension of the fiber of W.n/ over every point Z 2 gn.�.n// is precisely dn2 �
dim kerD n.Z/ D dn2 � dim kerDgn.Z/. Thus, W.n/ is of dimension dn2, and we
conclude that  is a holomorphic retract with image V. Hence, V is a smooth nc analytic
subvariety of �.

Lastly note that, for every Z 2V, �.g.Z//D g.�.Z//D .Z/DZ. Hence, g.V/DV

and gjV is an automorphism of V with inverse � jV. Set ' D gjV and thus g D ' ı .
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5.1. Application to the isomorphism problem

Recall that H1.Bd / is the operator algebra of bounded nc analytic functions on Bd .
Moreover, H1.Bd / is the multiplier algebra of the noncommutative reproducing kernel
Hilbert space of the nc Szego kernel. This implies that H1.Bd / is a dual operator alge-
bra [35]. The Hilbert space that H1.Bd / acts upon can be identified with the full Fock
space F 2

d
[10,35]. Thus,H1.Bd / is unitarily equivalent to the weak-* closed subalgebra

of operators on the Fock space F 2
d

, generated by the left creation operators (the regular
free semigroup algebra in the language of Davidson and Pitts [16–18]).

Given a subset of bounded nc functions S � H1.Bd / we consider the nc analytic
subvariety cut out by S :

V.S/ D ¹Z 2 Bd j for all f 2 S; f .Z/ D 0º:

It is immediate that V.S/ D V.	/, where 	 is the weak-* closed two-sided ideal gener-
ated by S . Conversely, given a set of points S � Bd , we define

	.S/ D ¹f 2 H1.Bd / j f jS D 0º:

Clearly, 	.S/ is weak-* closed two-sided ideal in H1.Bd /. In this section, we say that
V�Bd is an nc analytic subvariety if V.	.V//DV (in other words, V is Zariski closed
in the appropriate sense).

Given a non-empty analytic subvariety V � Bd , we have that H1.Bd /=	.V/ is
the algebra of bounded nc analytic functions on V. It can also be identified with the left
multiplier algebra of an appropriate nc reproducing kernel Hilbert space on V. We will
denote this algebra by H1.V/.

The following results are necessary for our discussion.

Theorem 5.5 ([35, Theorem 6.12, Corollary 6.14]). Let V � Bd and W � Be be two
nc analytic varieties. Let ˛WH1.V/!H1.W/ be a completely isometric isomorphism.
Then there exists nc maps gWBe ! Bd and f WBd ! Be , such that

f ı gjW D idW; g ı f jV D idV :

Moreover, composition with g implements ˛.

Theorem 5.6 ([37, Theorem 3.12]). Let f WBd !Bd be an nc map, such that f .0/D 0.
Let Fix.f / be the set of fixed points of f . If V � Cd is a linear subspace, such that
V \Bd .1/ D Fix.f /.1/, then, for every n 2 N, Fix.f /.n/ D .V ˝Mn/ \Bd .n/.

This theorem can be read differently. Recall that for an analytic self-map of Bd .1/ that
fixes the origin, the fixed point set coincides with the fixed subspace of f 0.0/ intersected
with Bd .1/. Since, for every n 2 N, �f .0n; 0n/ D f 0.0/˝ IMn is the derivative of fn
at 0n, we see that the fixed point set of fn is precisely the set of fixed points of�f .0n; 0n/
intersected with Bd .n/.
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Now, with these theorems at hand, we can prove the following theorem, which is a
strengthening of both [37, Theorem 4.1] and [19, Theorem 4.5]. Recall that, for S �Md ,
the matrix span of S is mat-span.S/ D

F
n2N mat-span.S/.n/, where

mat-span.S/.n/ D Span¹.Id ˝ T /.X/ j X 2 S.n/; T 2 L.Mn/º:

Theorem 5.7. Let V � Bd and W � Be be two nc analytic varieties. If H1.V/ and
H1.W/ are completely isometrically isomorphic, then there exists k 2 N and an auto-
morphism F WBk ! Bk , such that V;W � Bk and F maps V onto W.

Proof. Applying [35, Lemma 8.2] we can may assume that, for n � 0, we have that
mat-span.V/.n/ D Cd ˝Mn and mat-span.W/.n/ D Ce ˝Mn. Let gWBe ! Bd and
f WBe !Bd be the nc maps guaranteed by Theorem 5.5. Set hD g ı f and observe that
V � Fix.h/. However, by Corollary 5.3, Fix.h/.1/ ¤ ;. Pre- and post-composing with
automorphisms of Bd (they induce unitary equivalence on H1.Bd /), we may assume
that 0 2 Fix.h/.1/. Thus, by Theorem 5.6, there exists a subspace V � Cd , such that
Fix.h/.n/ D V ˝Mn. As mentioned above, Fix.h/.n/ coincides with the fixed points of
the linear operator �h.0n; 0n/ D h0.0/ ˝ IMn . Therefore, mat-span.V/.n/ \ Bd .n/ �

Fix.h/.n/. Thus, by assumption on V, Fix.h/.n/DCd ˝Mn, for every n 2N. Applying
the same argument to f ı g, we see that d D e, and f and g are automorphisms of Bd

that map V onto W and vice versa.

6. Horospheres in generalized balls

Let us assume that Q.0/ D 0 and Q is nc analytic. For every Z 2 DQ,

Qı.0;Z/ D kD�1=2
Q.Z/Q.Z/k:

Let T D Q.Z/Q.Z/�, then

Qı.0;Z/2 D kT .I � T /�1k D sup
x2�.T /

x

1 � x
:

Since x
1�x

is monotonically increasing on Œ0; 1/, Qı.0;Z/2 D kT k
1�kT k

D
kQ.Z/k2
1�kQ.Z/k2 .

Lemma 6.1. Let T be a positive operator with kT k < 1, then .1 � kT k/.1 � T /�1 � 1.

Proof. Since T � kT k, then 1 � T � 1 � kT k. Now, multiplying on left and right by
.1 � T /�1=2, we get 1 � .1 � kT k/.1 � T /�1.

Corollary 6.2. For every Z 2 DQ, Qı.0;W/�1 Qı.Z;W/ is bounded as W approaches a
point on the boundary.
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Proof. Note that

Qı.0;W/�1 Qı.Z;W/ D

s
1 � kQ.W/k2

kQ.W/k2
kD
�1=2

Q.Z/ .Q.Z/ �Q.W//D
�1=2

Q.W/�k:

Note that kQ.W/k ! 1, as W approaches the boundary of DQ. By the preceding lemma
applied to T D Q.W/�Q.W/,

D
�1=2

Q.Z/ .Q.Z/ �Q.W//.1 � kQ.W/k2/DQ.W/�.Q.Z/� �Q.W/�/D
�1=2

Q.Z/

� D
�1=2

Q.Z/ .Q.Z/ �Q.W//.Q.Z/� �Q.W/�/D
�1=2

Q.Z/ :

The right-hand side is bounded in norm, and we are done.

Definition 6.3. Let � 2 @DQ.1/. We denote by w points in DQ.1/. The big and small
horospheres of radius R > 0 at � are

FR.�/.n/ D ¹Z 2 DQ j lim inf
w!�

Qı.0; w/�1 Qı.Z; w ˝ In/ < Rº;

ER.�/.n/ D ¹Z 2 DQ j lim sup
w!�

Qı.0; w/�1 Qı.Z; w ˝ In/ < Rº:

Note that, since DQ is unitary invariant and closed under direct sums, for every
W 2 DQ, W ˝ In 2 DQ, since it is up to a canonical shuffle In ˝W D W˚n 2 DQ.
Moreover, sinceQ is nc we have thatQ.W˝ In/DQ.W/˝ In. For a point w 2DQ.1/,
we have w ˝ In D In ˝ w.

Lemma 6.4. If DQ is matrix convex, then for every R > 0 and � 2 @DQ.1/, ER.�/ is
matrix convex.

Proof. Let Z 2 ER.�/.n/ and V WCm ! Cn an isometry. Then, for w 2 DQ.1/, we have
that V �.w˝ In/V Dw˝ Im and thus, by Lemma 3.9, Qı.V �ZV;w˝ Im/� Qı.Z;w˝ In/,
and thus V �ZV 2 ER.�/.n/. Moreover, if Z1 2 ER.�/.n/ and Z2 2 ER.�/.m/, then

Qı.Z1 ˚ Z2; w ˝ InCm/ D max¹Qı.Z1; w ˝ In/; Qı.Z2; w ˝ Im/º:

Hence, ER.�/ is closed under direct sums.

The following lemma lists some properties of the horospheres. These properties fol-
low immediately from the definition, and we include them for the sake of completeness
(see [1, 3]).
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Lemma 6.5. Fix a bounded domain DQ.

(i) For all R > 0, ER.�/ � FR.�/.

(ii) For 0 < R1 < R2, ER1.�/ � ER2.�/ and FR1.�/ � FR2.�/.

(iii) DQ D
S
R>0ER.�/ D

S
R>0 FR.�/.

(iv)
T
R>0ER.�/ D

T
R>0 FR.�/ D ;.

Example 6.6. In the classical case of the ball, we recover the classical definition of a
horosphere in the ball. Indeed, if � D . 1 0 ::: 0 /. In the case of the ball Q.W/ is the oper-
ator W, hence for w 2 Bd , we haveQ.w/Q.w/� D kwk2 andQ.w/�Q.w/ is a rank one
operator in Md .

For z; w 2 Bd ,

Qı.0; w/�2 Qı.z; w/2

D
1 � kwk2

kwk2.1 � kzk2/
.Q.z/ �Q.w//.1 �Q.w/�Q.w//�1.Q.z/ �Q.w//�:

Write v D Q.w/�, a column vector, and let Pv be the orthogonal projection on the sub-
space spanned by v. Note that Pv D 1

kvk2
vv�. Therefore,

.1 �Q.w/�Q.w//�1 D .1 � vv�/�1 D .1 � kvk2Pv/
�1

D

1X
nD0

kvk2nP nv D I C
kvk2

1 � kvk2
Pv:

Now, multiplying by 1 � kQ.w/k2, we get that

.1 � kQ.w/k2/.1 �Q.w/�Q.w//�1 D .1 � kQ.w/k2/C kQ.w/k2PQ.w/� :

Thus, as w ! �, we get that limw!� .1 � kQ.w/k
2/.1 � Q.w/�Q.w//�1 D PQ.�/� .

Therefore,

lim
w!�

Qı.0; w/�2 Qı.z; w/2 D
j1 � z1j

2

1 � kzk2
:

Therefore, ER.�/.1/D FR.�/.1/ in this case and are the classical horospheres in the ball.
Moreover, note that since the rowQ.w/ is scalar, we have thatQ.w/˝ In D In˝Q.w/.
Hence, we have

.1 � kwk/2.Q.Z/ �Q.w/˝ In/.1 �Q.w/�Q.w/˝ In/�1.Q.Z/ �Q.w/˝ In/�

w!�
���! .Q.Z/ �Q.�/˝ In/P� .Q.Z/ �Q.�/˝ In/� D .I �Z1/.I �Z1/�:

Hence,
lim
w!�

Qı.0; w/�2 Qı.Z; w ˝ In/2 D kD�1=2Z .I �Z1/k:

In particular, the limit exists. Thus, ER.�/ D FR.�/. Moreover, for Z 2 Er .�/,

.I �Z1/.I �Z1/
� < R2.I � ZZ�/:
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Thus, we recover Popescu’s definition [32] of a horosphere in the free ball.

Lemma 6.7. For three distinct points X;Z;W 2 DQ.n/,

ı.X;W/�1ı.Z;W/ �
ı.Z;X/

kQ.W/k � kQ.X/k
C kD

�1=2

Q.Z/�D
1=2

Q.X/�k:

Proof. By the formula in Lemma 3.1,

ı.Z;W/ D kD
�1=2

Q.Z/ .Q.Z/ �Q.W//D
�1=2

Q.W/�k

� kD
�1=2

Q.Z/ .Q.Z/ �Q.X//D
�1=2

Q.W/�k C kD
�1=2

Q.Z/ .Q.X/ �Q.W//D
�1=2

Q.W/�k

� ı.Z;X/kD1=2

Q.X/�D
�1=2

Q.W/�k C ı.X;W/kD
�1=2

Q.Z/�D
1=2

Q.X/�k:

Since the points are distinct, ı.X;W/ ¤ 0. Moreover, since Q.X/ is a contraction, we
have that kD1=2

Q.X/�k � 1. Hence, we obtain the following inequality:

ı.X;W/�1ı.Z;W/ � ı.Z;X/
kD
�1=2

Q.W/�k

ı.X;W/
C kD

�1=2

Q.Z/�D
1=2

Q.X/�k:

We need to bound
kD
�1=2

Q.W/�k

ı.X;W/ . By functional calculus,

kD
�1=2

Q.W/�k D
1p

1 � kQ.W/k2
:

Hence, we will bound
p
1 � kQ.W/k2ı.X;W/ from bellow. Again, sinceQ.X/ is a strict

contraction, .1 �Q.X/Q.X/�/�1 � 1. Let us write

T D D
�1=2

Q.X/.Q.X/ �Q.W//D
�1=2

Q.W/� ;

Then,
T �T � D

�1=2

Q.W/�.Q.X/
�
�Q.W/�/.Q.X/ �Q.W//D

�1=2

Q.W/� :

Hence,p
1 � kQ.W/k2ı.X;W/ D

p
1 � kQ.W/k2kT k

�

p
1 � kQ.W/k2k.Q.X/ �Q.W//D

�1=2

Q.W/�k

�

p
1 � kQ.W/k2.kQ.W/D

�1=2

Q.W/�k � kQ.X/D
�1=2

Q.W/�k/:

Now, if ADQ.W/D
�1=2

Q.W/� , then A�ADQ.W/�Q.W/D�1
Q.W/� . Thus, by functional cal-

culus,

kAk D
kQ.W/kp
1 � kQ.W/k2

:

Now, for the second summand, we havep
1 � kQ.W/k2kQ.X/D�1=2

Q.W/�k �
p
1 � kQ.W/k2kQ.X/kkD�1=2

Q.W/�k D kQ.X/k:
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In summary, p
1 � kQ.W/k2ı.X;W/ � kQ.W/k � kQ.X/k:

Thus,

ı.X;W/�1ı.Z;W/ �
ı.Z;W/

kQ.W/k � kQ.X/k
C kD

�1=2

Q.Z/�D
1=2

Q.X/�k:

Theorem 6.8 (Noncommutative Wolff theorem). Let 0 2 � D DQ be a bounded matrix
convex set. Let f W�!� be an nc map with no fixed points. Then there exists � 2 @�.1/,
such that for every R > 0 and n 2 N, f ın.ER.�// � FR.�/.

Proof. Let 0 < rm < 1 be a sequence that monotonically increases to 1. Let fm.Z/ D
f .rmZ/. By Lemma 3.4, fm has a unique fixed pointwm 2�.1/. Any accumulation point
of wm in �.1/ will be a fixed point of f . Hence (passing to a subsequence, if necessary),
we may assume that wm ! � 2 @�. Fix R > 0, and let Z 2 ER.�/.n/. Then

lim sup
m!1

Qı.0; wm/
�1 Qı.Z; wm ˝ In/ � lim sup

w!�

Qı.0; w/�1 Qı.Z; w ˝ In/ < R:

Fix an arbitrary " > 0 small enough. Then, for every m big enough,

Qı.0; wm/
�1 Qı.Z; wm ˝ In/ < R � ":

By [13, Corollary 3.4] and the fact that wm is a fixed point of f ınm , for every n 2 N, we
conclude that for every m > m0,

Qı.f ınm .Z/; f ınm .wm/˝ In/ D Qı.f
ın
m .Z/; wm ˝ In/

� Qı.Z; wm ˝ In/ < Qı.0; wm/.R � "/:

Now, fix n 2N. For every X 2�, limm!1 f
ın
m .X/D f ın.X/. By the continuity of Qı,

we have that limm!1
Qı.f ınm .X/; f ın.X// D 0. By Lemma 6.7,

Qı.f ınm .Z/; wm ˝ In/�1 Qı.f ın.Z/; wm ˝ In/

�

Qı.f ın.Z/; f ınm .Z//
kQ.wm/k � kQ.f ınm .Z//k

C kD
�1=2

Q.f ın.Z//�D
1=2

Q.f ınm .Z//�k:

Since limm!1
1

kQ.wm/k�kQ.f
ın
m .Z//k D

1
1�kQ.f ın.Z//k ; we get that

lim sup
m!1

Qı.f ınm .Z/; wm ˝ In/�1 Qı.f ın.Z/; wm ˝ In/ � 1:

In particular, for m� 0,

Qı.f ın.Z/; wm ˝ In/ < .1C "/ Qı.f ınm .Z/; wm ˝ In/ � .1C "/ Qı.Z; wm ˝ In/:

Hence, if we take 0 < ı < "
R�"

, then again, for every m big enough,

Qı.0; wm/
�1 Qı.f ın.Z/; wm ˝ In/ < .1C ı/.R � "/ < R:
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This implies that

lim inf
w!�

Qı.0; w/�1 Qı.f ın.Z/; w ˝ In/ � lim inf
m!1

Qı.0; wm/
�1 Qı.f ın.Z/; wm ˝ In/ < R:

Thus, by definition, f ın.Z/ 2 FR.�/.
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