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The character triple conjecture
for height zero characters and the prime 2

Damiano Rossi

Abstract. We prove that Spith’s character triple conjecture holds for every finite
group with respect to maximal defect characters at the prime 2. This is done by redu-
cing the maximal defect case of the conjecture to the so-called inductive Alperin—
McKay condition whose verification has recently been completed by Ruhstorfer for
the prime 2. As a consequence, we obtain the character triple conjecture for all
2-blocks with abelian defect groups by applying (one implication of) Brauer’s height
zero conjecture. We also obtain similar results for the block-free version of the char-
acter triple conjecture at any prime p.

Introduction

Based upon a large body of conjectural and computational evidence, the local-global prin-
ciple in the representation theory of finite groups asserts that, given a prime number p
dividing the order of a finite group G, the representation theory of G at the prime p is
largely determined by the p-local structure of the group. Here, the group G plays the role
of a global ambient, and is opposed to the p-local structure which captures the embedding
of the p-subgroups inside G. The questions arising in this context led to some of the most
important achievements in group representation theory of the past decades. Among others,
we mention the proof of Brauer’s height zero conjecture from the 1950s recently obtained
in [21].

The conjectural evidence mentioned above consists of a series of statements that
link different representation theoretic aspects of the group G to its p-local structure.
Apart from a few exceptions of a more structural flavour, all these statements can be
ultimately reduced to proving the so-called character triple conjecture for all quasi-simple
groups. The latter, introduced by Spéth in [40], should be understood as the final result
of an investigation initiated by Dade during the 1990s that led to a sequence of increas-
ingly stronger conjectures [8—10]. While relating global and local information through
the notion of p-chains, an idea introduced by Robinson already in the 1980s and sub-
sequently exploited by Dade, Spéth’s conjecture provides a way to control fundamental
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cohomological and Clifford theoretical conditions that arise when considering the repres-
entation theoretical compatibility of normal group embeddings. This is achieved through
the notion of G-block isomorphisms of character triples, hence the name of the conjec-
ture. Given the technical nature of the character triple conjecture, we refer the reader to
Section | for a precise definition.

The aim of this paper is to show that the character triple conjecture holds at the prime 2
for maximal defect characters. More precisely, we show that the conjecture holds for
every Brauer 2-block B with respect to the non-negative integer d = d(B) as specified in
Remark 1.3.

Theorem A. The character triple conjecture holds for every Brauer 2-block B of a finite
group with respect to the non-negative integer d(B).

As an immediate consequence of Theorem A, and using the if part of Brauer’s height
zero conjecture [15], we deduce that the character triple conjecture holds for all Brauer
2-blocks with abelian defect groups.

Corollary B. The character triple conjecture holds for every Brauer 2-block with abelian
defect groups.

The proofs of Theorem A and Corollary B rely on the verification of the inductive
Alperin—-McKay condition introduced in Definition 7.2 of [39] for the prime 2, that was
recently completed by Ruhstorfer in [37]. In order to make use of this result, we prove
a reduction theorem that shows the maximal defect case of the character triple conjec-
ture can be reduced to the verification of the inductive Alperin—-McKay condition for all
(covering groups of) non-abelian finite simple groups. In this paper, we will use the refor-
mulation of this condition given in Conjecture 1.5 below. We can then state our reduction
theorem as follows.

Theorem C. Let G be a finite group and p a prime number. If every covering group of
a non-abelian finite simple group involved in G satisfies the inductive Alperin—-McKay
condition at the prime p, then the character triple conjecture holds for every Brauer
p-block B of the group G with respect to the non-negative integer d(B).

While the above theorem appears to be new in nature, the reverse implication should
be expected (at least among the experts in this research area). In fact, as mentioned above,
the character triple conjecture implies most of the so-called local-global conjectures. The-
orem 4.1 below shows that the maximal defect case of the character triple conjecture
implies the inductive Alperin—-McKay condition (as stated in Conjecture 1.5). As a con-
sequence, we deduce that these two statements are in fact logically equivalent.

The arguments used to prove the above results can be adapted to obtain analogous
block-free statements. In particular, using the solution of the McKay conjecture by Caba-
nes and Spith [7], we are able to show that the block-free form of the character triple
conjecture holds at any prime p for characters of degree coprime to p (see Theorem 5.3)
and for every finite group with a normal abelian Sylow p-subgroup (see Corollary 5.4).
This will follow from a reduction of the block-free form of the character triple conjecture
to the verification of the inductive McKay condition for (the universal covering group of)
non-abelian finite simple groups (see Theorem 5.1).
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The paper is organised as follows. In Section 1, we collect some background mater-
ial and state the character triple conjecture and the inductive Alperin—-McKay condition.
Section 2 is devoted to the proof of Theorem C. This is then used in Section 3 in order
to obtain Theorem A and Corollary B. In Section 4, we prove Theorem 4.1, a converse to
Theorem C. We conclude by sketching the proofs of the block-free analogues of all these
results in Section 5

1. Preliminaries and notation

In this section, we collect some basic definitions and the statements of the conjectures
considered below. Throughout this paper, we freely use basic results from the represent-
ation theory of finite groups that can be found in standard texts such as [23, 24], but also
in the more recent [17, 18]. We denote by Irr(G) the set of complex valued irreducible
characters of a finite group G. If G is a normal subgroup of a larger group A4 and y is an
irreducible character of G fixed by the conjugacy action of A, then we say that (4, G, x)
is a character triple. Character triples can be compared thanks to an equivalence rela-
tion known as G-block isomorphism and denoted by ~¢ (see Definition 3.6 in [40]).
Roughly speaking if (Hy, My, %) ~¢g (Ha, M>, ¥,) are two G-block isomorphic char-
acter triples, then the behaviour of the characters of H; that lie above ¥ is strictly related
to that of the characters of H, that lie above . More precisely, in this case G induces
an isomorphism between the quotients Hy/M; and H, /M, and, for every intermediate
subgroup M; < Jy < H; corresponding to M, < J, < Hj, there is a bijection between
Irr(Jq | ¥1) and Irr(J7 | 9,) preserving important character theoretic informations.

For every prime number p, the set Irr(G) admits a partition into the so-called Brauer
p-blocks of G. Given a p-block B of G, we denote by Irr(B) the set of irreducible char-
acters belonging to B. Conversely, given an irreducible character y of G, we denote by
bl(y) the unique p-block containing y. We will often suppress the p from p-block and
simply refer to B as a block of G. Next, recall that for every y € Irr(G), the degree y(1)
of y divides the order of G. We define the p-defect (or simply the defect) of y as the
non-negative integer d(x) such that p?® = |G| p»/x(1), and where for every n > 1 we
denote by n,, the largest power of p that divides n. If d is a fixed non-negative integer,
then Irr? (G) is the set of irreducible characters of G of defect d while, for a block B,
we denote by Irr? (B) the intersection of Irr? (G) and Irr(B). Next, to each block B is
associated a G-conjugacy class of p-subgroups D of G called the defect groups of B. If
|D| = p™, then we call d(B) := m the defect of B. It is well known that d(B) coincides
with the maximum d(y) for y € Irr(B). In particular, it follows that a character y is of
maximal defect in its block B if and only if it is of height zero. Here the height of y is
defined as ht(y) := d(B) — d(x) and for every & > 0 we denote by Irry(B) the set of
irreducible characters y belonging to B and with height ht(y) = h.

In order to state the character triple conjecture, we need to introduce some more nota-
tion on p-chains. We refer here to [40] and [28]. Let Z be a normal p-subgroup of G
and denote by N (G, Z) the set of p-chains of G starting with Z, that is the set of chains
0 ={Dyo=Z7Z < D; <---< D, = D(0)} of p-subgroups D; of G and where Dy = Z
and we denote by D(o) the final term of o. The length of o is the number |o| = n of
terms strictly containing Z. The reason for this convention stems from the fact that this
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definition of length coincides with the notion of dimension of o when viewed as a sim-
plex (see, for instance, Section 1.1 of [31]). We then obtain a partition of 9t(G, Z) into
the sets N(G, Z), of p-chains o satisfying (—1)I°l = ¢ . 1, for ¢ € {+, —}. Since Z is
normal in G, the group G acts by conjugation on Ji(G, Z), by conjugating simultan-
eously each term of a p-chain o, and we denote by G, the stabiliser in G of the chain o,
i.e., the intersection of the normalisers Ng (D;) for each term D; of ¢. Recall that, for a
block b of a subgroup H of G, we denote by b the block of G obtained via Brauer induc-
tion whenever it is defined Section 4 of [24]. The set of such characters is often denoted
by Irr? (By). We can now give the following definition.

Definition 1.1. Consider a block B of G, a non-negative integer d, and ¢ € {+, —}.
Then €% (B, Z), is the set of pairs (o, %) where o is a p-chain belonging to N(G, Z),
and 9 is an irreducible character of the stabiliser G, with defect d() =d and satisfying
bl(9)¢ = B.

Since the action of G fixes B and Z, the group G acts on €4 (B, Z),. We denote by
(0, 9) the G-orbit of (o,9) € €4(B, Z), and by €4 (B, Z),/G the corresponding set of
G-orbits. We can now state the character triple conjecture in the form introduced by Spéth
in Conjecture 6.3 of [40].

Conjecture 1.2 (Character triple conjecture). Let G < A be finite groups, p a prime
number, and assume that O, (G), the largest normal p-subgroup of G, is contained in the
centre of G. Then, for every p-block B of G with non-central defect groups and every
non-negative integer d, there exists an Ap-equivariant bijection

Q:€%(B,0,(G))+/G — €4(B,0,(G))-/G

such that
(Ao,z% Gy, 0) ~¢ (Ap,xa Gpv X)

for every (0,9) € €4(B,0,(G))+ and (p, y) € Q((0,9)).

Remark 1.3. We say that the character triple conjecture holds at the prime p for maximal
defect characters if Conjecture 1.2 holds at the prime p for every p-block B of a finite
group and with respect to d = d(B).

Observe that the G-block isomorphism of character triples considered in the state-
ment above does not depend on the choice of representatives (o, ) and (p, x) in the
corresponding G-orbits thanks to Lemma 3.8 (¢) in [40]. Moreover, notice that the assump-
tion on O,(G) is not restrictive. In fact, we could replace O,(G) with any central p-
subgroup Z of G and consider blocks B with defect groups strictly containing Z (see
Conjecture 2.2 in [28]). However, in this case Z < O,(G) and the result follows trivially
whenever Z # O, (G) thanks to a well-known contractibility argument due to Quillen, see
Lemma 2.3 in [28]. In Section 2, we will consider the case where Z is not required to be
contained in the centre of G. The equivalence of this latter form with Conjecture 1.2 above
is however not immediate to prove (this will appear in a future work of the author [34]).

Remark 1.4. In some of the arguments given in Section 2, it will be useful to consider
normal p-chains. A p-chain o is said to be normal if each term D; is normal in the largest
term D (o). Proceeding as in the proof of Proposition 6.10 in [40], and following previous
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ideas introduced by Knorr and Robinson (see Proposition 3.3 in [16]), it follows that
when dealing with Conjecture 1.2 it is no loss of generality to assume that each p-chain
considered in the definition of €4 (B, 0,(G)), is normal. For these reasons, we will keep
using normal p-chains throughout the rest of the paper without further reference. This
approach was also used in [28] without any comment.

We recall that Conjecture 1.2 implies Dade’s extended projective conjecture (see 4.10
in [10]), according to Proposition 6.4 in [40], and, as mentioned already in the introduc-
tion, that it should be understood as an analogue of the final Dade’s inductive conjecture,
see 5.8 in [10]. In fact, it was announced long ago that the latter would reduce to quasi-
simple groups, although a proof of this result has not yet appeared. Nevertheless, it was
shown in Theorem 1.3 of [40] that if the character triple conjecture holds for quasi-simple
groups, then the weaker Dade’s projective conjecture holds for every finite group. A final
reduction of the character triple conjecture to quasi-simple groups has recently been com-
pleted in [34]. Regarding the state of the art of the character triple conjecture, we refer
the reader to Section 9 of [40] for the case of sporadic groups, special linear groups of
degree 2, and blocks with cyclic defect groups, to [28] for the case of p-solvable groups,
and to the series of papers [29, 31-33] for the case of finite simple groups of Lie type in
non-defining characteristic.

Next, we consider the inductive Alperin—-McKay condition. In its most popular form,
this condition is stated for simple groups and their covering groups (see Definition 7.2
in [39]). Nevertheless, this condition can be stated for every finite group. In this paper, we
consider the following form, in which the cohomological and Clifford theoretic require-
ments are reformulated in terms of G-block isomorphisms of character triples.

Conjecture 1.5 (Inductive Alperin-McKay condition). Let G <] A be finite groups, p a
prime number, and consider a p-block B of G with defect group D and Brauer corres-
pondent b in Ng (D). Then there exists an N4 (D) p-equivariant bijection

O : Irrg(B) — Irre(b)

such that
(A9, G, x) ~6 (Na(D)y,Ng(D), (1)),

for every ¥ € Trrg(B).

Observe that the condition on character triples in Conjecture 1.5 could equivalently be
stated by using the relation >, considered in [41]. Moreover, we point out that, arguing
as in the proof of Proposition 6.8 in [40], it follows that the inductive Alperin—-McKay
condition from Definition 4.12 in [41] holds for the universal covering group X of a non-
abelian simple group S if and only if Conjecture 1.5 holds for every quasi-simple group Y
covering S with respect to ¥ <Y x Aut(Y). Then, Theorem C in [39] can be restated
by saying that if Conjecture 1.5 holds for every quasi-simple group, then the Alperin—
McKay conjecture holds for every finite group. Finally, a much stronger version of this
reduction theorem was obtained in Theorem 7.1 of [26], where the authors showed that
Conjecture 1.5 reduces to quasi-simple groups.
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2. Proof of Theorem C

In order to prove Theorem C, we need the following slightly stronger statement, in which
we allow the p-subgroup Z from Conjecture 1.2 to be non-central. Recall that a group S
is said to be involved in G if there exist subgroups K < H < G such that S is isomorphic
to H/K.

Theorem 2.1. Let G be a finite group, consider a prime p, and suppose that the inductive
Alperin—-McKay condition (as stated in Conjecture 1.5) holds at the prime p for every
covering group of a non-abelian finite simple group involved in G. Let G < A and let
U < G be a p-subgroup of order |U| = p™. Then, for every p-block B of G with defect
d := d(B) > m, there exists an N4(U) p-equivariant bijection

Qpu €4 B.U)4+/G - € (B.U)_/G

such that
(Ao*,ﬂ’ GU” 19) ~G (Ap,xa Gp’ X)

for every (0,9) € €4(B,U)+ and (p, 1) € 2p,u((0,7)).

From now on, G is a group satisfying the assumption of Theorem 2.1 and we prove
the result by induction on the order of G. In particular, we assume that the result holds for
every choice of groups U’ < G’ < A’ with |G’| < |G|. We proceed by proving a series of
intermediate results. In what follows, given a normal p-subgroup Q of a finite group H
and a collection B of p-blocks of H we define the set of pairs

e/ (8.0). =[] €/ ®.0).

beB
for any non-negative integer f and ¢ € {4+, —}.

Lemma2.2. Let Q be a p-subgroup of G satisfying U < Q < D for some defect group D
of B, and denote by Bg the set of those p-blocks b of Ng(Q) satisfying b% = B and
d(b) = d, where |D| = p?. Then there exists an N4 (Q)-equivariant bijection

Qpy.0 1 €4 (Bg. 0)+/Ng(Q) — €4 (Bg, 0)-/Ng(0Q)

such that

(NA(Q)c,0. NG (Q)s.0) ~ng(0) Na(Q)o,v-NG(Q)o. V)

for every (¢, @) € ‘€d(BQ, Q)+ and (0, V) € Lpy.0((5, ), where we now denote by
(S‘v (p) the NG(Q)_Orblt Of (g) 90)

Proof. Without loss of generality, we may assume that U = O, (G). For if it were not,
the argument used in the proof of Lemma 2.3 in [28] would give the bijection required in
Theorem 2.1. In particular, the assumption U < Q implies that Ng (Q) < G, and therefore
the statement of Theorem 2.1 holds true for O < Ng(Q) I N4(Q) by the inductive
hypothesis. Then, if b is any block belonging to Bg and |Q| = pl, the assumption Q < D
implies that d = d(b) > [, and we obtain an N4 (Q);-equivariant bijection

Q.0 : €4 (b, 0)4+/Ng(Q) — €4 (b, 0)-/Ng(Q)
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such that

2.1 (N4(Q),0. NG (Q)c. 9) ~Ng(0) Na(Q)o,y-NG(Q)o. V)

for every (¢, ¢) € €4 (b, Q)4 and (0, V) € Qp,0((s, ¢)). Next, observe that N4 (Q)p acts
by conjugation on the set of blocks B and choose an N4 (Q)pg-transversal § in Bg. For
each block b € §, notice that

N4(Q)p» <N4(Q)B.

and fix an N4(Q)p-transversal Slj' in €4(b, Q)4+ /NG (Q). Since the bijection Qp,p is
N4(Q)p-equivariant, we deduce that the image §,~ of S[j' under the map Qj ¢ is an
N4 (Q)p-transversal in €% (b, Q)_ /Ng(Q). It follows that, for any & € {—, +}, the set

7e=1]5ss

bes

is an N4 (Q)p-transversal in ‘€d(BQ, 0)s/Ng(Q) and that the maps Qp o, for b € S,
induce a bijection between the transversals 7+ and 7 ~. By setting

QBQ,Q (@x) = (Qv W)x

for every x € N4(Q)p and every (¢, ¢) € T+ corresponding to (o, V) € T, we obtain
an Ny4(Q)p-equivariant bijection Qp, 0 between the sets ‘€d(BQ, 0)+/Ng(Q) and
‘€d(BQ, 0)—/Ng(Q). Furthermore, observe that the Ng (Q)-isomorphism required in
the statement is the same as the one given in (2.1) by the bijections £2; . This completes
the proof. |

Before proceeding to the next step, we introduce some further notation. For every
p-subgroup Q of G strictly containing U, we define the subset ‘C’g (B, U) consisting
of those pairs (o, ) in €% (B, U) such that the p-chain o satisfies 0 = {Dg = U <
Dy =0 < Dy <--- < Dy} for some n > 1. In other words, E’g(B, U) is the set of
pairs (o, ¥) such that Q is the second term of the chain o. In this case, we also define
‘Gg(B, U). as the intersection of ‘65(3, U) with €4(B, U),, for ¢ € {+, —}. If we
denote by N4 (U, Q) the intersection N4(U) N Ng(Q), then Na(U, Q)p acts by con-
jugation on the sets ‘65 (B, U),. Using Lemma 2.2, we can construct a bijection between

the sets ‘6’5 (U, B),.

Corollary 2.3. Let Q be a p-subgroup of G satisfying U < Q < D for some defect
group D of B, and set d := d(B). Then there exists an N4(U, Q) p-equivariant bijection

Og : €5 (B, U)+/Ng(Q) — €5 (B, U)-/Ng(Q)

such that
(N4(Q)o,5: NG (Q)o, D) ~nNg(0) (Na(Q)p,x-NG(Q)p. 1)

for every (0,19) € ‘65 (B,U)4 and (p, ) € ©g((0,V)), where we now denote by (o, 1)
the Ng (Q)-orbit of (o, 1).
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Proof. First, observe that if o is a normal p-chain of G with second term Q, then each
term of o is contained in Ng(Q). It follows that, if we define oy to be the p-chain
obtained by removing U from o, then the assignment o — oy defines a bijection between
the set of normal p-chains of G starting with U and with second term @, and the set of nor-
mal p-chains of Ng (Q) starting with Q. Moreover, observe that || = |oy| + 1 and, by
assuming as we may that U = O, (G), that N4(Q)s = Na(U) N N4(Q)oy = Na(Q)oy -
Then, we get a bijection

€4(B.U) — € (Bg. Q)
(0,9) = (ou, )

that preserves the conjugacy action of N4(Q)p and maps ‘Cg (B,U)4 to €4 (Bg, 0)-
and €4 (B,U)- 10 €% (Bg, Q) +.

Consider now the map 2,0 given by Lemma 2.2 and fix pairs (s, ¢) € ed (Bp,0)+
and (0, V) € Q2B,,0((s, ¢)). Write (s, ¢) = (pu, x) and (0, ¥) = (ou, ?) for (p, y) €
‘65 (B,U)—-and (0,9) € ‘C“(dz (B, U)+. We then define the map ® ¢ by sending the Ng (Q)-
orbit of the pair (o, ¢) to the Ng (Q)-orbit of (p, y) constructed above. Notice that @ ¢ is
N4 (Q)p-equivariant since so is Qp, 0. Moreover, observe that the Ng (Q)-block iso-
morphism is an equivalence relation which is in particular reflexive. Then, since the
character triples (N4(Q)s,9, NG (Q)s, V) and (N4(Q)p,x- NG (Q)p, x) coincide, respect-

ively, with (N4(Q)o,v. NG (Q)g. ¥) and (N4(Q)c,o. NG (Q)c¢ . ¢), the Ng (Q)-block iso-
morphism in the statement above coincides with that given by Lemma 2.2. ]

In the next proposition, whose statement will be used in the proof of Theorem 2.1,
we combine the bijections ©¢ for all p-subgroups Q belonging to a G-conjugacy class.
Given a p-subgroup Q satisfying U < Q, we denote by Q its G-orbit and by ‘(?d (B,U)

the subset of €4 (B, U) consisting of those pairs (o, ) such that the second term of the
p-chain ¢ is G-conjugate to Q. Equivalently, “Gg (B, U) is the set of all the pairs of
€4 (B, U) that are G-conjugate to some pair of ‘65 (B, U). Notice that GN4 (U, Q) p-acts
on ‘C’g (B, U) and denote by 13% (B, U), the intersection of ‘Cg (B,U) with €4 (B, U),.

Proposition 2.4. Let Q be a p-subgroup of G satisfying U < Q < D, for some defect
group D of B, and denote by Q its G-orbit. Then, for d := d(B), thereis a GN4(U, Q) -
equivariant bijection

(2.2) Op: Eg(B, U);/G — ‘ég(B,U)_/G
such that
(AU,l?s GO’? 29) ~G (Ap,Xs Gpv X)

for every (0,9) € t’g (B,U)4+ and (p, x) € @Q((O’, 1)) where we now denote by (o, 9)
the G-orbit of the pair (o, ).

Proof. Throughout the proof we need to differentiate between G-orbits and Ng (Q)-orbits
of pairs (o, ¢t). For this reason, we denote by Og (0, ?) and O, (g) (0, ¥) the G-orbit and
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the Ng (Q)-orbit of (o, 1), respectively. Suppose that (o, ) belongs to ‘68 (B,U)+ and fix

g € G such that (o, ©)8 belongs to E’g (B,U)4+. If ©¢ is the map given by Corollary 2.3,
then choose (p, y) in ‘C’g (B, U)— such that

Ong (@) (s X) = O (Ong(0)((0,9)%)).

We define
05(06(0.9)) := Oc(p. )

and claim this is a well-defined GN4 (U, Q)p -equivariant bijection between ‘C’g (B,U)+/G
and ‘6% (B,U)_/G. First, suppose that h € G and (o, )" belongs to ‘Cé (B,U)4.If Dy

is the second term of the p-chain o, then it follows that Q¢ =D = Qh_1 , so that
h~'g € Ng(Q), and hence

Ong(0) (@, 9)") = Ong(0)((0,9)"'8) = Ong () (0, 9)%).

In particular, we get

00 (Ong(0)(0.9)™M) = Ong 0y (P 1)-

This shows that the definition of ®5 does not depend on the choice of the element g € G
while it is clear that it does not depend on the choice of the representative (p, y) in the
Ng (Q)-orbit © g (Ong(0) (0, P)¥). It also follows that the map © is G-equivariant. Let
now x € N4(U, Q)p. By the above argument, we can assume that the pair (o, ©) belongs
to ‘C’g (B,U)+. Then, since ©¢ is Ng(U, Q) g-equivariant, we get

O0(Ong(0)(0,9)) = O (Ong(0)(0. D))" = Ong(o)(p: 1),

from which we obtain
©5(96(0.9)%) = Og(p, )"
This proves our claim.

Next, we prove the condition on character triples. Keep (o, ©#) and (p, x) as before.
Recall that, up to G-conjugation, we may assume in the definition of © that Q coincides
with the second term of o and of p. Moreover, since G-block isomorphisms are compatible
with G-conjugation according to Lemma 3.8(c) in [40], this assumption is compatible
with the condition on character triples. Then, since the Ng (Q)-orbits of (o, ©#) and (p, x)
correspond under ® ¢, Corollary 2.3 yields

(2.3) (N4(Q)6,9:NG(Q)os. ) ~ng(0) Na(Q)p,x- N (Q)p, X).

Furthermore, since Q is a term of the p-chains ¢ and p, we have that A; = N4(Q)s and
Ay, = Ny(Q),. We can then rewrite (2.3) as

(24) (Ao',ﬁv G(I» 19) NNG(Q) (A;O,Xv Gp7 X)

To conclude we need to show that the Ng (Q)-block isomorphism (2.4) is actually a G-
block isomorphism. This is done by applying Lemma 2.11 in [28]. In fact, if D denotes a
defect group of the block of # in G4, then O < 0,(G5) < D and we get

Cg4,,5(D) =< Nga,,(Q) =Ng(Q)As,9.
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A similar argument shows that

CGa,,(P) <Ng(Q)Ap

for a defect group P of the block of y in G, hence verifying the hypothesis of Lemma 2.11
in [28]. The proof is now complete. ]

We now come to the final step of the proof of Theorem 2.1. Observe that this is the
step where we actually make use of the inductive Alperin-McKay condition.

Proof of Theorem 2.1. Recall that U is a normal p-subgroup of G of order |U| = p™
and let D be a defect group of the block B. By assumption, m < d = d(B), and it fol-
lows from Theorem 4.8 in [24] that U < D. We claim that every pair (o, %) € €4 (B, U)
is G-conjugate to a pair whose corresponding p-chain has all of its terms contained
in D. For this notice that, if b is a block of G, satisfying 5° = B, then we can find a
defect group P of b and an element g € G such that P < D¢ according to Lemma 4.13
in [24]. Now, if D(o) denotes the last term of o, then Theorem 4.8 in [24] implies that
D(0) <0,(Gs) < P < D8 . By replacing (o, ¢) with (o, ﬁ)g_l , we obtain a pair with the
properties required above. Thus, we can write 0 = {Dy = U < D < --- < D(0)} with
D(o) < D and observe that either |o| = 0, which leads to the p-chain o4 = {Dy = U},
or |o| > 1, in which case we can have either U < Dy < D or U < Dy = D, which leads
to the p-chaino_ = {Dy =U < Dy = D}.

Consider the set ¥ of p-subgroups Q of G satisfying U < Q& < D for some g€ G.
We denote by ¥ /G the corresponding set of G-orbits and by O the G-orbit of Q. If
Qe¥/Gandx e Ny(U)p,thenU < Q8 < D forsome g€ G and U < Q4 < D*.On
the other hand, since x stabilises the block B, we know that D* is a defect group of B and
so there exists 4 € G such that D** = D It follows that U < Q%*" < D*" = D Fur-
thermore, since G <I N4(U)pg, we can write gx = xg’ for some g’ € G and we conclude
that U < Q*¢'" < D. This shows that 0* = Q¥ belongs to % /G and therefore the group
N4 (U)p acts by conjugation on ¥ /G . Fix an N4 (U) g-transversal § in & /G and observe
that, for every Q € §, Proposition 2.4 gives a GN4(U, Q) p-equivariant bijection

Op: rfg(B, U);/G — z?g(B, U)_/G
such that
(Aa,z‘}, Gy, 0) ~¢ (Ap,x, G, X
for every (o, 9) € ‘C’g(B, U)yt and (p, ) € @Q(w,_zﬂ).
Hence, if we fix a GN4 (U, Q)p-transversal ’Tg in ‘C’g (B,U)4+/G, then the equivari-
ance properties of ©g imply that the image TQ_ of Tg under ©g is a GN4(U. Q)p-

transversal in fg (B,U)-/G.1If we now define ‘6’;1,7 (B,U), to be the subset of €4 (B, U),

consisting of those pairs (o, ¢) such that the second term of o belongs to ¥, then we con-
clude from the above discussion that

T+ T+ T . T—
Tg =] 75 and 75 =[] 75
Qes Qes$
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are N4 (U)p-transversals in ‘Gg (B,U)+/G and ‘63”5- (B, U)—/G respectively. This follows
from the fact that, by a Frattini argument, GN4(U, Q)p coincides with the stabiliser of
the G-orbit Q under the action of N4 (U)p. We can then define an N4 (U)p-equivariant
bijection

Qg :€L(B,U)+/G - €L(B,U)-/G
by setting L .

Q7 ((0.9)) = (p. 0"

Tg corresponding to (p, y) € TQ_ via ©3, and every
x € N4(U)p. By the properties of the maps Op, we get that the map Q¢ satisfies the
required condition on character triples.

Following the first paragraph of the proof, observe that the set €% (B, U), can be
partitioned into the subsets 13?,7 (B,U), and §,, where we define g, as the set of those
pairs (o, ¥) such that o is G-conjugate to o,. Notice that G4 is the set of pairs (o4, V)
with ¥ € Irr? (G, +) such that bl(#)® = B. Equivalently, since o is G-invariant and
d = d(B), the set 4 consists of those pairs (o4, ¥}) where ¢ is a character of p-height
zero in the block B. In particular, if S; is an N4 (U, D)p-transversal in Irrg(B), then the
set ’]'; of G-orbits (o4, %) with ¢ € S; is a GN4 (U, D) p-transversal in §4/G. Next,
since by hypothesis the inductive Alperin—-McKay condition (as stated in Conjecture 1.5)
holds for every covering group of a non-abelian finite simple group involved in G, we
can apply Theorem 7.1 in [26] with respect to G <I N4(U)p to obtain an Ny (U, D)p-
equivariant bijection

for every O € §, every (0,1) €

Np,p : Iirg(B) — Irre(C),
where C is the Brauer correspondent of B in Ng (D). Moreover, we have
(2.5) (N4(U)B,5.G.¥) ~G (N4(U. D). Ng (D), x)

for every @ € Irrg(B) and y = I1p,p (). Now the image S of S;‘ via the map I1p p is
an Ny (U, D) p-transversal in the set Irrg (C). Noticing that the set §_ consists of pairs of
the form (0—, x)® for some y € Irro(C) and g € G, we deduce that the set T~ of G-orbits

(0—, x) with y € S5 is a GN4(U, D)p-transversal in §_. A Frattini argument also shows
that N4 (U)p = GN4(U, D)p. We can now define an N4 (U) g-equivariant bijection

Qg :94/G — 9_/G

by defining

Qg((0+.9)") == (0. )"

for every (04,0) € 'T; corresponding to (0—, y) € T and every x € Ng(U)p. The
G-block isomorphism of character triples (2.5) can be rewritten as

(A0+,19» G0+7 V) ~¢ (Aof,x, Go_, X)

We can now construct a map €2 with the properties required above by defining it to
be Q% and Qg on the subsets 1?;1,7 (B,U)+/G and 9+ /G, respectively. This concludes
the proof. ]
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3. Proof of Theorem A and Corollary B

We now obtain Theorem A as a consequence of Theorem 2.1.

Proof of Theorem A. Notice first that the statement of Theorem 2.1 implies the char-
acter triple conjecture in the form introduced in Conjecture 6.3 of [40] if we assume
U < Z(G). Furthermore, in this case it is no loss of generality to assume that U = O,(G)
according to Lema 2.3 in [28]. In order to apply Theorem 2.1, observe that the induct-
ive Alperin—-McKay condition has been verified for the prime p = 2 with respect to
alternating simple groups (see [11] and Corollary 8.3(a) in [39]), Suzuki and Ree groups
(Theorem 1.1 in [20]), sporadic groups [1], groups of Lie type with exceptional Schur
multiplier (see [1] and Lemma 7.3 in[2]), groups of Lie type in characteristic 2 (Proposi-
tion 14.8 in [36]), classical groups of Lie type in odd characteristic (Corollary 8.1 in [2]),
and finally, exceptional groups of Lie type in odd characteristic (Theorem C in [37] and
Theorem C in [35]). [

As claimed in the introduction, using Theorem A and the if part of Brauer’s height
zero conjecture, we can prove that the character triple conjecture holds for every 2-block
with abelian defect groups.

Proof of Corollary B. Let G < A be finite groups and U <1 G a 2-subgroup. Consider a
2-block B of G with abelian defect group D such that U < D, and write d := d(B). By
Theorem A, there exists a bijection €4 (B, U),/G — €4(B,U)_/G, as required by the
character triple conjecture. So it remains to show that such a bijection can be constructed
by replacing d with any other non-negative integer, say 0 < f # d. For this, consider a
pair (0,9) € €/ (B, U), so that ¥ is an irreducible character of the stabiliser G, of defect
d(®) = f and whose block satisfies bl(1%)® = B. Observe that 0 # oy := {Dy = U}
and o # o_ :={Do = U < D; = D}. Infact, G;, = G, G,_ = Ng(D) and, since D
is abelian, Brauer’s height zero conjecture (we actually only need the half proved in [15])
implies that Irr(B) = Irr? (B) and that Irr(b) = Irr? (b), where b is the Brauer corres-
pondent of B in Ng (D). In particular, the 2-chain o belongs to the set ¥ defined in the
final step of the proof of Theorem 2.1. Now proceeding by induction on the order of G
and arguing as in Lemma 2.2, Corollary 2.3 and Proposition 2.4, it suffices to exhibit
an Ny (Q)c-equivariant bijection €/ (¢, Q)4+ /Ng(Q) — €7 (c, 0)_/Ng(Q) inducing
Ng (Q)-block isomorphisms for every U < Q < D and every block ¢ of Ng (Q) satisfy-
ing ¢ = B. In other words, we need to show that the character triple conjecture holds for
the 2-block ¢ of Ng(Q) with respect to f. This follows by induction since the condition
c% = B implies that ¢ has abelian defect groups according to Lemma 4.13 in [24]. ]

4. A converse to Theorem C

It was shown by Dade in [9] that the projective form of his conjecture implies the Alperin—
McKay conjecture. Later, Navarro proved (Theorem 9.27 in [25]) that the block-free
version of Dade’s ordinary conjecture implies the McKay Conjecture, while Kessar and
Linckelmann extended these results in [14] by proving that Dade’s ordinary conjecture
implies the Alperin—McKay conjecture. It is therefore natural to ask whether the character
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triple conjecture, which plays the role of an inductive condition for Dade’s projective con-
jecture, implies the inductive Alperin-McKay condition. In this section, we show that this
is the case and obtain the following result, which can be seen as a converse to Theorem C.

Theorem 4.1. If the character triple conjecture holds for height zero characters at the
prime p, then the inductive Alperin—-McKay condition (in the generality considered in
Conjecture 1.5) holds at the prime p.

The structure of a minimal counterexample G to Conjecture 1.5 has been studied in
Section 7 of [26]. In particular, according to the argument used in the proof of Proposi-
tion 7.4 in [26], we know that O, (G) is contained in the centre of G.

Lemma 4.2. Let G < A be a minimal counterexample to Conjecture 1.5 with respect to
|G : Z(G)|. Then O,(G) < Z(G).

Proof. By the choice of G, we know that Conjecture 1.5 holds for every group H such
that |H : Z(H)| < |G : Z(G)|. Now observe that in Section 7 of [26], the authors consider
a minimal counterexample G to their Theorem 7.1 (denoted by N there). Thus they have
that Conjecture 1.5 holds for every group H with |H : Z(H)| < |G : Z(G)|, and addition-
ally that the inductive Alperin—-McKay condition is satisfied for each covering group of a
simple group involved in G. However, the only place where the latter hypothesis is actu-
ally used is the proof of Proposition 7.7 in [26] (where they apply Corollary 6.3 in [26]). In
particular, the arguments of Lemma 7.3 and Proposition 7.4 in [26] apply to our minimal
counterexample G, and hence we may assume that O,(G) < Z(G). |

Now, let G < A be a minimal counterexample as in Lemma 4.2, and consider a
block B of G for which Conjecture 1.5 fails to hold. If D is a defect group of B, then
0,(G) < D, forif O,(G) = D, then D is normal in G and Conjecture 1.5 follows trivi-
ally. Then, for every non-negative integer d, we can define the sets ‘6(‘)1 (B,0,(G)) and
E’ld (B, O,(G)) consisting of those pairs (o, ¥) belonging to €4 (B, 0,(G)) and such
that 0 = {Dg = 0,(G)} and 0 = {Dy = 0,(G) < D1}, with D; a defect group of B,
respectively. Moreover, set

g9 :=2%(B,0,(G)+\€J(B,0,(G)) and g<:=¢%(B,0,(G))-\€{(B,0,(G)).

For ¢ € {+, —}, notice that G acts by conjugation on g¢, and let /G denote the cor-
responding set of G-orbits. As usual, for any element (o, ¥) € ggl , we denote its G-orbit
by (o, V).

Proposition 4.3. Let G < A be finite groups with G a minimal counterexample to Con-
Jecture 1.5 with respect to |G : Z(G)| and consider a block B of G, with defect group D,
for which the result fails to hold. If d := d(B), then there exists an N4 (D) p-equivariant
bijection

n:94/6 - ¢4/G

such that
(Ao',ﬁa GD" ﬁ) ~G (Ap,)U G,O’ X)s

for every (0,0) € {,’i and (p, ) € T1((0, 9)).
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Proof. For ¢ € {4+, —}, define the set jg of p-chains o of G that start with O, (G) and for
which there exists a character ¢ € Irr(G,) such that (o, %) € g¢. Denote by 4% /G the

corresponding set of G-orbits and by & the G-orbit of o € g;’. We claim that, if o € ng
has final term D (o), then there exists g € G such that

D(0) < D¥ <G,

and D?¥ is a defect group of some block of G. In fact, if (o, ) € glg' and Q is a defect
group of bl(?}), then D(c) < 0,(G,) < Q according to Theorem 4.8 in [24], while
Lemma 4.13 in [24] implies that there exists g € G such that Q@ < D&. Furthermore,
if f denotes the defect of the block bl(¥}), then d < f by Theorem 4.6 in [24], and hence
we have

d< f<d®l(®)°) =d(B)=:d.

This shows that D& = Q < G4 and thus D(0) < D$ < G, as claimed.
Next, we define an N4 (D) p-equivariant bijection

f:99/6 - 3¢/G

by sending the G-orbit of the p-chain o to the G-orbit of the p-chain p obtained by
deleting the final term D (o) if D(0) is a defect group of B. If D(o) is not a defect group
of B, then the above discussion implies that there exists g € G such that D(c) < D%
and D¢ is a defect group of a block of the stabiliser G. In this case, we define i by
sending the G-orbit of o to the G-orbit of the p-chain p obtained by adding the term D#
at the end of the p-chain o. Notice that the above definition does not depend on the choice
of D, but only on its G,-conjugacy class, nor on the representative o in &. Furthermore,
as D& < G, we deduce that the map sends normal p-chains to normal p-chains. To
conclude that T1 is well defined we need to check that, for every p € ﬁ((_f), there exists
X € G, such that (p, x) € 44 . Without loss of generality, we may assume that p is the
p-chain obtained from ¢ by adding D as a final term and that, if (o, %) € 5(1, the block
b := bl(¥) has defect group D (otherwise we apply the same argument exchanging the
roles of o and p). Notice also that by the definition of the sets § g , since we are excluding
the p-chain {Dy = 0,(G)}, we get G5 < G because the last term of o properly contains
0,(G). In particular, we deduce that

1Go : Z(Go)| < |G : Z(G),

and thus G, satisfies Conjecture 1.5 by the minimality of G. Then, if ¢ is the Brauer
correspondent of bl(¢) in Ng, (D) = G, then there exists an A4, p-equivariant bijection

Osp: Irt? (b) — Irr? (¢)

such that
(Aa,z% GOs 19) NGG (Ap,ﬂv Gp; H(T (ﬂ))v

for every 9 € Irr? (b). Noticing that C4,,-6(D) < Ag,» and applying Lemma 2.11 in [28],
we can use the above G4-block isomorphism of character triples to get

(AO,ﬂv GO‘? 1-9) ~G (Ap,ﬂv G,O5 1_[(7(19))
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In particular, for y := I, (%), we have (p, ) € 44 and so I is well defined as explained
above. Observe that in the case where o is a p-chain with final term D (o) a defect group
of B, and hence p is obtained by removing D(c) from o, we can define ¢ = b% and
apply the inductive hypothesis to G, to obtain an A -equivariant bijection

Mo : Irr? (c) > Irr? »)

inducing G,-block isomorphisms of character triples. In this case, we would define y :=
H;,lc () to obtain a pair (p, x) € 2. Finally, we use the bijections II, s 5, and H;i, con-
sidered above to define an Ny (D) g-equivariant bijection I1: ¢ i /G — 92 /G as required
in the statement by sending the G-orbit of (o, ¢) to the G-orbit of the pair (p, y) construc-
ted above. |

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let G < A be finite groups and assume that G is a minimal counter-
example to Conjecture 1.5 with respect to |G : Z(G)|. Let B be a block of G with
defect group D and Brauer correspondent b in Ng (D) for which the result fails to hold.
By Lemma 4.2 and the discussion preceding it, we know that O,(G) < Z(G) and that
0,(G) < D. Then, since we are assuming that the character triple conjecture holds for
the non-negative integer d = d(B) at the prime p, we can find an A g-equivariant bijection

Q:€%(B.0,(G))+/G — €*(B.0,(G))-/G,

such that
(AO',199 G()" 19) ~G (G,O,X’ Gpv X)’

for every (o, 9) € ‘C’d(B,Op(G))+ and (p, x) € Q((0,0)).

Consider now the sets f’g (B, 0,(G)) and ‘6’{1 (B, 0,(G)) defined before Proposi-
tion 4.3, and notice that ‘Cg (B,0,(G))/G is the set of G-orbits of pairs (o, ¢) where
0 ={Do = 0,(G)} and ¥ € Irry(B), while ‘€1d (B,0,(G))/G is the set of G-orbits of
pairs (p, x) with p = {Dg = O,(G) < Dy = D} and y € Itrg(b). Suppose that 2 maps
€d(B,0,(G))/G onto €¢(B,0,(G))/G. If the G-orbit of (o, ¥) is mapped to that of
(p, x), then we write y := ©(¥) and obtain an N4 (D) p-equivariant bijection

O : Irrg(B) — Irre(b)
such that
(A9.G.¥) ~c (Na(D)y,Ng(D),O(1)),
for every ¥ € Irrg(B), as required by Conjecture 1.5. This contradicts our choice of G and
thus the image of ‘C’g (B,0,(G))/G under  cannot coincide with ‘6{" (B,0,(G))/G.
However, if IT is the bijection given by Proposition 4.3, then we get
€5 (B.0,(G))/G| = [€4(B.0,(G))+/G| 9%/ G|
= 1Q(€*(B.0,(G))+/G)| — IT(#L/G)|
= [€4(B.0,(G)-/G| - 92/G| = [€{ (B.0,(G))/G|.
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and therefore there exists some element (a9, ¥9) of ‘651 (B, O,(G)) whose G-orbit is
mapped via Q outside the set ‘6{1 (B,0,(G))/G. Now, we proceed as follows: since
Q((00. o)) belongs to g%/ G, we can apply the inverse of the bijection IT and define

(01, 191) = H_I(Q((UQ, 190))),

an element of 3’1/G c €4(B, 0,(G))+/G. We can apply 2 to (o1, %). If 2((o1, P1))
belongs to ‘C’{i (B,0,(G))/ G, then we stop. Otherwise, as before, the element Q2((o71, ¥1))
belongs to ¢ /G and we define

(02.92) 1= 171 (Q((01. %))).

Proceeding this way, for i > 1, we define a sequence of elements of €4 (B, 0,(G6))+/G
by setting

(0i. %) == I (Q((0i-1. Di-1))).
if 2((oj—1,¥;—1)) is not in ‘Cld (B,0,(G))/G. 1t is important to observe that, for every
i > 1, the pair (07, ¥;) does not belong to ‘65’ (B, 0,(G)) and satisfies the condition

(41) (AUQ’ G0’05190) ~G (AU,'»GGpﬁi)'

Next, we claim that there is some integer n > 1 such that Q((o,,, ¥y,)) € ‘€f1 (B,0,(G))/G.
Assume for the sake of contradiction that this is not the case. Then the set

= {(IT™" 0 Q) ((00. D)) | i =0} S €4 (B,0,(G))+/G

is well defined and its image under 2 is contained in g¢/G. If we apply IT~! to Q(S),
then we obtain a subset of S. Equivalently, the map IT~! o Q maps § to itself. Therefore,
since § is finite, we must have

1oQ(8) =5S.
However, noticing that (og, 9) € § N ‘651 (B,0,(G))/G and recalling, from elementary
set theory, that the image of the intersection of two sets under an injective map coincides
with the intersection of the images of such sets, we deduce that

I =125 = 1) N g4/G| = [M((S) N 42/G)|
= mQE) NI (@g2/6) = 15N gl/Gl <IS| -1,

a contradiction. This proves our claim, and therefore we can find some n > 1 such that
Q((04, %)) € €4(B,0,(G))/G. Now, since €f (B, 0,(G)) is N (D) g-stable and both
Q and IT are N4(D)p-equivariant, the pairs (og, t9) and (oy, ¥,) are not Ng(D)p-
conjugate. Then, we can find an Ny (D) g-transversal 7 in €4 (B, 0,(G))+/G containing

(00, Do) and (04, ). We define a new N4 (D) p-equivariant bijection £’ between the sets
€% (B,0,(G))+/G and €4 (B,0,(G))-/G by setting

L Q((0.9)%), if (0.%) € 7\ {(00. D). (0n. 9n)},
Q' ((0,0)%) := { ({00, 92)%), if (,9) = (00, D),
Q((00. %0)¥). if (0.9) = (Ou. On).
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for every (0,0) € 7 and x € Ng(D)p. Using (4.1) and because ~¢ is an equivalence
relation according to Lemma 3.8 (a) in [40], we deduce that Q' satisfies the requirements of
the character triple conjecture. Moreover, since by construction (o, ¥,) is not in ‘C’g’ (B),
the definition of Q' coincides with that of € on the set ‘661 (B,0,(G))/G apart from the
value at our “bad” element (0, t¥¢), which is now mapped to ‘6{1 (B,0,(G))/G under 2’
Arguing in this way, we can redefine the map €2 for all such bad elements in such a way
that the newly defined €2 maps ‘66” (B,0,(G))/G to ‘6{1 (B,0,(G)). As explained at the
beginning of the proof, this implies that Conjecture 1.5 holds for B. This contradicts our
choice of a minimal counterexample and the proof is now complete. ]

5. The block-free form of the character triple conjecture

In this section, we consider a block-free analogue of Theorem 2.1. For this purpose, given
a non-negative integer d and a normal p-subgroup U of G, we denote by €4 (G, U), the
union of all sets €% (B, U), for B ablock of G and ¢ € {+,—}. Equivalently, €% (G, U), is
the set of pairs (o, ) where o is a p-chain of G starting with U and satisfying (—1)!°l =¢l,
and ¥ is an irreducible character of the stabiliser G, with defect d(¥) = d. Moreover,
observe that by removing the condition (iv) of Remark 3.7 in [40] from the definition
of G-block isomorphism, we obtain a weaker isomorphism of character triples. This was
called G-central isomorphism in Definition 3.3.4 of [27], and will be denoted by ~,.
With these definitions at hand, a block-free form of the character triple conjecture was
introduced in Conjecture 3.5.5 in [27]. The case of maximal defect characters, which in
this context coincide with characters of p’-degree, can then be deduced by assuming the
inductive McKay condition form [13]. Below we use a reformulation of this condition
in the spirit of Conjecture 1.5. We refer the reader to Conjecture A in [30] for a precise
statement.

Theorem 5.1. Let G be a finite group, consider a prime p, and suppose that the inductive
McKay condition (as stated in Conjecture A of [30]) holds at the prime p for the universal
covering group of every non-abelian finite simple group involved in G. Let G < A and
let U < G be a p-subgroup of order |U| < |G|, = p?. Then, there exists an Ny(U)-
equivariant bijection

Qu :€4G,U)+/G - €%(G,U)-/G
such that
(A(T,ﬂ’ GO'v 29) ’\"8 (A,D,X’ GPV X)
for every (5,9) € €4(G,U) 4 and (p, x) € Qu (0, D)).

Proof. By replacing the defect group D of B with a Sylow p-subgroup P of G in the
arguments used to prove Lemma 2.2, Corollary 2.3, and Proposition 2.4, we obtain, for
any U < Q < P,a GN4(U, Q)-equivariant bijection

Op :fg(G, U);/G — ‘Cg(G, U)_/G

such that
(AO,l?a GO‘? 29) N% (Ap,)(s Gpv X)
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for every (o, ) € ‘6% (G, U)+ and (p, x) € O5((o, )). Then, as in the final step of the

proof of Theorem 2.1, we can combine the bijections O to obtain an N4 (U)-equivariant
bijection
Qg 1 €L(G,U)4+/G — €L(G,U)_/G,

where ¥ denotes the set of p-subgroups Q of G such that U < Q¢ < P for some g € G,
while ‘6"% (G, U), is the set of pairs (o, 9) € €4(G, U), such that the second term of the
p-chain o belongs to . To conclude, we define 4 as the set of pairs (04, ¥) with
oy ={U} and ¥ € Irr,/(G), and the set §_ of pairs (o_, y)¢ with o_ = {U < P},
x €lrryy(Ng (P)) and g € G. To construct a bijection Q¢ that induces G-central isomorph-
isms of character triples between the sets §./G and §_/G, we now use the hypothesis
that the inductive McKay condition holds for the universal covering group of every non-
abelian simple group involved in G and apply Theorem B in [30]. The bijection €2 is then
constructed using Q¢ and Qg. ]

Before proceeding further, we make a remark on the block-free form of Theorem 4.1.

Remark 5.2. By following the argument used in Section 4, while replacing everywhere
the defect group D with a Sylow p-subgroup P and Lemma 4.2 with Corollary 4.3 in [30],
one could prove a block-free version of Theorem 4.1 and hence obtain a converse to The-
orem 5.1. More precisely, if the block-free version of the character triple conjecture holds
for every finite group G at the prime p with respect to d :=log,,(|G|p), then the inductive
McKay condition (in the formulation given in Conjecture A of [30]) holds for every finite
group at the prime p.

While we can obtain the block-free form of the character triple conjecture for the
prime 2 and maximal defect characters as a consequence of Theorem A, the above result
can be used to handle the remaining odd primes p thanks to the solution of McKay’s
conjecture recently obtained by Cabanes and Spéth [7].

Theorem 5.3. Let G be a finite group and write |G|, = p?. Then, the block-free form of
the character triple conjecture (Conjecture 3.5.5 in [27]) holds for G at the prime p and
with respect to the defect d.

Proof. By Theorem 5.1, it suffices to verify the inductive McKay condition for finite
simple groups with respect to the prime p. This has been verified for Suzuki and Ree
groups (Section 16-17 of [13]), alternating groups (Theorem 3.1 in [19]), groups of Lie
type with exceptional Schur multiplier (Theorem 4.1 in [19]), sporadic groups [19], groups
of Lie type in defining characteristic (Theorem 1.1 in [38]), and groups of Lie type in
non-defining characteristic unless of type D [3-6]. The remaining case of groups of Lie
type D in non-defining characteristic follows from Theorem 3.1 in [22] and [7] by applying
Theorem 2.4 in [6]. u

As a consequence of the above theorem, we obtain the block-free form of the character
triple conjecture for every prime p and every finite group G with normal abelian Sylow
p-subgroup.

Corollary 5.4. The block-free version of the character triple conjecture holds at the
prime p for every finite group with a normal abelian Sylow p-subgroup.
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Proof. Let G be a finite group with a normal abelian Sylow p-subgroup P and U a normal
p-subgroup of G with |U| < |G|, =: p?. Then, applying Theorem 5.3, we get a bijection

Q¢ - €e(G,U)+/G - €4 G, U)_/G

satisfying the requirements of the block-free form of the character triple conjecture. Next,
consider a non-negative integer f # d. Since the sets €4 (G, U), are empty for & € {+, —}
whenever f > d, we may assume that f < d. Now, as in the proof of Theorem 5.1, let
be the set of all p-subgroups of G such that U < Q < P and denote by ‘C’}J: (G,U), the set
of pairs (0, %) € €/ (G, U), such that the second term of o belongs to % . By induction
on |G : Z(G)|, we may assume that the block-free form of the character triple conjecture
holds every group H with |H : Z(H)| < |G : Z(G)| with respect to every non-negative
integer f (unlike in the setting considered in the proof of Theorem 5.1, where induction
only yields the case f = d). Thanks to this observation, and noticing that Ng(Q) has a
normal abelian Sylow p-subgroup for every p-subgroup O of G, we can argue as in the
first part of the proof of Theorem 5.1 to obtain an N4 (U )-equivariant bijection

Qy 1 €L(G,U)+/G - €L(G,U)_/G

inducing central isomorphisms of character triples. Therefore, to conclude it suffices to
construct an N4 (U )-equivariant bijection between the G-orbits on

€ =€/ (G,U)+ \€L(G.U)+

and those of
€1 :="€4(G,U)-\ €L(G,U)-

inducing central isomorphisms of character triples. We claim that €, and €; are empty.
First assume that (o, ) € €. In this case, 0 = {U} and ¢ is a character of G5 = G of
defect d(¥) = f. Since G has a normal abelian Sylow p-subgroup, Theorem 6.15 in [12]
implies that all characters of G have defect d > f. Therefore €, must be empty. Similarly,
suppose that (o, ) belongs to €;. Then ¢ = {U < P} and ¢ is an irreducible character
of G; = Ng(P) with defect d() = f. Once again, since f < d, Theorem 6.15 in [12]
yields a contradiction. Therefore €y and €; are empty and so the bijection Qg satisfies
the requirements of the block-free form of the character triple conjecture with respect
to f. This completes the proof. ]
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