BV functions and sets of finite perimeter in sub-Riemannian manifolds
L. Ambrosio
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, ItalyR. Ghezzi
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; Institut de Mathématiques de Bourgogne, 9 Avenue Alain Savary, BP47870 21078 Dijon Cedex, FranceV. Magnani
Dipartimento Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
![BV functions and sets of finite perimeter in sub-Riemannian manifolds cover](/_next/image?url=https%3A%2F%2Fcontent.ems.press%2Fassets%2Fpublic%2Fimages%2Fserial-issues%2Fcover-aihpc-volume-32-issue-3.png&w=3840&q=90)
Abstract
We give a notion of BV function on an oriented manifold where a volume form and a family of lower semicontinuous quadratic forms are given. When we consider sub-Riemannian manifolds, our definition coincides with the one given in the more general context of metric measure spaces which are doubling and support a Poincaré inequality. We focus on finite perimeter sets, i.e., sets whose characteristic function is BV, in sub-Riemannian manifolds. Under an assumption on the nilpotent approximation, we prove a blowup theorem, generalizing the one obtained for step-2 Carnot groups in [24].
Cite this article
L. Ambrosio, R. Ghezzi, V. Magnani, BV functions and sets of finite perimeter in sub-Riemannian manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 3, pp. 489–517
DOI 10.1016/J.ANIHPC.2014.01.005