Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary
Catherine Bandle
Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, SwitzerlandMoshe Marcus
Department of Mathematics, Technion I.I.T., 32000 Haifa, Israel
Abstract
By means of comparison functions the asymptotic behaviour of solutions of semilinear elliptic equations which blow up at the boundary is established. The results depend only on the principal part of the second order operator and can be expressed in a simple way in terms of the associated Riemannian metric. In order to discuss the asymptotic behaviour of the derivatives a blowup technique together with a scaling argument is used.
Résumé
On utilise des fonctions de comparaison afin d’établir Ie comportement asymptotique des solutions de problèmes elliptiques semilinéaires qui explosent au bord. Les résultats s’expriment de manière simple à l’aide de Ia métrique de Riemann associée à cet opérateur. L’étude des dérivées repose sur une technique de blowup et utilise une invariance de groupe des solutions.
Cite this article
Catherine Bandle, Moshe Marcus, Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 2, pp. 155–171
DOI 10.1016/S0294-1449(16)30162-7