Optimal regularity for planar mappings of finite distortion
Kari Astala
Department of Mathematics and Statistics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, FI-00014 University of Helsinki, FinlandJames T. Gill
Department of Mathematics, University of Washington, C-337 Padelford Hall, Box 354350, Seattle, WA 98195-4350, USASteffen Rohde
Department of Mathematics, University of Washington, C-337 Padelford Hall, Box 354350, Seattle, WA 98195-4350, USAEero Saksman
Department of Mathematics and Statistics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, FI-00014 University of Helsinki, Finland
Abstract
Let be a mapping of finite distortion, where . Assume that the distortion function satisfies for some . We establish optimal regularity and area distortion estimates for . In particular, we prove that for every . This answers positively, in dimension , the well-known conjectures of Iwaniec and Sbordone [T. Iwaniec, C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 519–572, Conjecture 1.1] and of Iwaniec, Koskela and Martin [T. Iwaniec, P. Koskela, G. Martin, Mappings of BMO-distortion and Beltrami-type operators, J. Anal. Math. 88 (2002) 337–381, Conjecture 7.1].
Cite this article
Kari Astala, James T. Gill, Steffen Rohde, Eero Saksman, Optimal regularity for planar mappings of finite distortion. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 1, pp. 1–19
DOI 10.1016/J.ANIHPC.2009.01.012