Best constants in a borderline case of second-order Moser type inequalities
Daniele Cassani
Università degli Studi di Milano, Dipartimento di Matematica “F. Enriques”, Via Saldini 50, 20133 Milano, ItalyBernhard Ruf
Università degli Studi di Milano, Dipartimento di Matematica “F. Enriques”, Via Saldini 50, 20133 Milano, ItalyCristina Tarsi
Università degli Studi di Milano, Dipartimento di Matematica “F. Enriques”, Via Saldini 50, 20133 Milano, Italy
Abstract
We study optimal embeddings for the space of functions whose Laplacian belongs to , where is a bounded domain. This function space turns out to be strictly larger than the Sobolev space in which the whole set of second-order derivatives is considered. In particular, in the limiting Sobolev case, when , we establish a sharp embedding inequality into the Zygmund space . On one hand, this result enables us to improve the Brezis–Merle (Brezis and Merle (1991) [13]) regularity estimate for the Dirichlet problem , on ; on the other hand, it represents a borderline case of D. R. Adams' (1988) [1] generalization of Trudinger–Moser type inequalities to the case of higher-order derivatives. Extensions to dimension are also given. Besides, we show how the best constants in the embedding inequalities change under different boundary conditions.
Cite this article
Daniele Cassani, Bernhard Ruf, Cristina Tarsi, Best constants in a borderline case of second-order Moser type inequalities. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 1, pp. 73–93
DOI 10.1016/J.ANIHPC.2009.07.006