Quasi-static damage evolution and homogenization: A case study of non-commutability
Andrea Braides
Dipartimento di Matematica, Università di Roma ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Roma, ItalyBiagio Cassano
Dipartimento di Matematica ‘G. Castelnuovo’, ‘Sapienza’ Università di Roma, Piazzale Aldo Moro 2, 00185 Roma, ItalyAdriana Garroni
Dipartimento di Matematica ‘G. Castelnuovo’, ‘Sapienza’ Università di Roma, Piazzale Aldo Moro 2, 00185 Roma, ItalyDavid Sarrocco
Dipartimento di Matematica ‘G. Castelnuovo’, ‘Sapienza’ Università di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy
Abstract
In this paper we consider a family of quasi-static evolution problems involving oscillating energies and dissipations . Even though we have separate -convergence of and , the -limit of the sum does not agree with the sum of the -limits. Nevertheless, can still be viewed as the sum of an internal energy and a dissipation, and the corresponding quasi-static evolution is the limit of the quasi-static evolutions related to and . This result contributes to the analysis of the interaction between -convergence and variational evolution, which has recently attracted much interest both in the framework of energetic solutions and in the theory of gradient flows.
Cite this article
Andrea Braides, Biagio Cassano, Adriana Garroni, David Sarrocco, Quasi-static damage evolution and homogenization: A case study of non-commutability. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 2, pp. 309–328
DOI 10.1016/J.ANIHPC.2014.10.003