New isoperimetric estimates for solutions to Monge–Ampère equations
B. Brandolini
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, ItalyC. Nitsch
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, ItalyC. Trombetti
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy
Abstract
We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampère equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampère operator behaves just the contrary of the first eigenvalue of the Laplace operator.
Cite this article
B. Brandolini, C. Nitsch, C. Trombetti, New isoperimetric estimates for solutions to Monge–Ampère equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 4, pp. 1265–1275
DOI 10.1016/J.ANIHPC.2008.09.005