Decay of geometry for Fibonacci critical covering maps of the circle
Eduardo Colli
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cep 05508-090, São Paulo, SP, BrazilMarcio L. do Nascimento
Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa 01, Cep 66075-110, Belém, PA, BrazilEdson Vargas
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cep 05508-090, São Paulo, SP, Brazil
Abstract
We study the growth of when is a Fibonacci critical covering map of the circle with negative Schwarzian derivative, degree and critical point of order . As an application we prove that exhibits exponential decay of geometry if and only if , and in this case it has an absolutely continuous invariant probability measure, although not satisfying the so-called Collet–Eckmann condition.
Résumé
Nous étudions la croissance de lorsque est un revêtement critique de Fibonacci du cercle avec dérivée Schwarzienne négative, degré et point critique d'ordre . Comme application nous démontrons que exhibe une décroissance exponentielle de géométrie si et seulement si , et dans ce cas a une mesure de probabilité invariante absolument continue, sans satisfaire la condition de Collet–Eckmann.
Cite this article
Eduardo Colli, Marcio L. do Nascimento, Edson Vargas, Decay of geometry for Fibonacci critical covering maps of the circle. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 4, pp. 1533–1551
DOI 10.1016/J.ANIHPC.2009.03.001