Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity

  • Raffaele Carlone

    Università “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli, Italy
  • Michele Correggi

    “Sapienza” Università di Roma, Dipartimento di Matematica, P.le Aldo Moro, 5, 00185, Roma, Italy
  • Lorenzo Tentarelli

    “Sapienza” Università di Roma, Dipartimento di Matematica, P.le Aldo Moro, 5, 00185, Roma, Italy
Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity cover
Download PDF

A subscription is required to access this article.

Abstract

We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the nonlinearity, while in the focusing case blowing-up solutions may arise.

Cite this article

Raffaele Carlone, Michele Correggi, Lorenzo Tentarelli, Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 1, pp. 257–294

DOI 10.1016/J.ANIHPC.2018.05.003