Fonctions qui opèrent sur les espaces de Besov et de Triebel

  • Gérard Bourdaud

    Université Paris-VII, C.N.R.S.-U.A. n° 212, Tour 45-55, 2, place Jussieu, 75251 Paris Cedex 05, France

Abstract

Let be a function which acts, via left composition, on the Besov – or Triebel – space . We prove that is locally Lipschitz, if is imbedded into , and globally Lipschitz if not; these conditions are necessary and sufficient when .

Résumé

Soit une fonction qui opère, par composition à gauche, sur l’espace de Besov – ou de Triebel – . On montre que est localement lipschitzienne si s’injecte dans , globalement lipschitzienne sinon. Ces conditions sont nécessaires et suffisantes pour .

Cite this article

Gérard Bourdaud, Fonctions qui opèrent sur les espaces de Besov et de Triebel. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), no. 4, pp. 413–422

DOI 10.1016/S0294-1449(16)30209-8