The minimal period problem of classical Hamiltonian systems with even potentials
Yiming Long
Nankai Institute of Mathematics, Nankai University, Tianjin 300071, P.R. China

Abstract
In this paper, we study the existence of periodic solutions with prescribed minimal period for even superquadratic autonomous second order Hamiltonian systems defined on Rn with no convexity assumptions. We use a direct variational approach for this problem on a W1, 2 space of functions invariant under the action of a transformation group isomorphic to the Klein Fourgroup V4 = Z2⊕Z2 to find symmetric periodic solutions, and prove a new iteration inequality on the Morse index by iterating such functions properly. Using these tools and the Mountain-pass theorem, we show that for every T > 0 the abobe mentioned system possesses a T-periodic solution x(t) with minimal period T or T/3, and this solution is even about t = 0, T/2 and odd about t = T/4, 3 T/4.
Résumé
Dans cet article, on étudie l’existence de solutions périodiques avec la période minimale prescrit pour les systèmes hamiltoniens pairs autonomes d’ordre secondaire à croissance super-quadratique, définis dans Rn sans hypothèse de convexité. Pour trouver des solutions périodiques symétriques, on utilise une approche directe variationnelle pour ce problème dans W1, 2, espace de fonctions invariantes sous l’action d’un groupe de transformation, qui est isomorphe avec le Quatre-groupe de Klein V4 = Z2⊕Z2, et prouve les nouvelles inégalités d’itération sur les indices de Morse pour l’itération propre de telles fonctions. En utilisant ces outils et le théorème de Col de Montagne, on montre que pour chaque T > 0 le système ci-dessus possède une solution T-période x(t) avec la periode minimale T ou T/3, et que cette solution est paire sur t = 0, T/2 et impaire sur t = T/4, 3 T/4.
Cite this article
Yiming Long, The minimal period problem of classical Hamiltonian systems with even potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), no. 6, pp. 605–626
DOI 10.1016/S0294-1449(16)30199-8