Continuity of composition operators in Sobolev spaces
Gérard Bourdaud
Université de Paris, I.M.J. - P.R.G., Case 7012, 75205 Paris Cedex 13, FranceMadani Moussai
Laboratory of Functional Analysis and Geometry of Spaces, M. Boudiaf University of M'Sila, 28000 M'Sila, Algeria
A subscription is required to access this article.
Abstract
We prove that all the composition operators , which take the Adams-Frazier space W_{p}^{m} \cap W\limits^{˙}_{mp}^{1}(\mathbb{R}^{n}) to itself, are continuous mappings from W_{p}^{m} \cap W\limits^{˙}_{mp}^{1}(\mathbb{R}^{n}) to itself, for every integer and every real number . The same automatic continuity property holds for Sobolev spaces for and .
Cite this article
Gérard Bourdaud, Madani Moussai, Continuity of composition operators in Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 7, pp. 2053–2063
DOI 10.1016/J.ANIHPC.2019.07.002