Relaxed multi-marginal costs and quantization effects
Luigi De Pascale
Dipartimento di Matematica e Informatica, Università di Firenze, Viale Morgagni 67/a, 50134 Firenze, ItalyGuy Bouchitté
Laboratoire IMATH, Université de Toulon, BP 20132, 83957 La Garde Cedex, FranceGiuseppe Buttazzo
Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, ItalyThierry Champion
Laboratoire IMATH, Université de Toulon, BP 20132, 83957 La Garde Cedex, France
Abstract
We propose a duality theory for multi-marginal repulsive cost that appears in optimal transport problems arising in Density Functional Theory. The related optimization problems involve probabilities on the entire space and, as minimizing sequences may lose mass at infinity, it is natural to expect relaxed solutions which are sub-probabilities. We first characterize the N-marginals relaxed cost in terms of a stratification formula which takes into account all k interactions with . We then develop a duality framework involving continuous functions vanishing at infinity and deduce primal-dual necessary and sufficient optimality conditions. Next we prove the existence and the regularity of an optimal dual potential under very mild assumptions. In the last part of the paper, we apply our results to a minimization problem involving a given continuous potential and we give evidence of a mass quantization effect for optimal solutions.
Cite this article
Luigi De Pascale, Guy Bouchitté, Giuseppe Buttazzo, Thierry Champion, Relaxed multi-marginal costs and quantization effects. Ann. Inst. H. Poincaré Anal. Non Linéaire 38 (2021), no. 1, pp. 61–90
DOI 10.1016/J.ANIHPC.2020.06.004