Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions

  • R. Kiwan

    Laboratoire de Mathématiques et Physique Théorique, Université de Tours, UMR 6083 du CNRS, Parc de Grandmont, 37200 Tours, France
  • M. Jazar

    Mathematics department, Lebanese University, P.O. Box 826, Tripoli, Lebanon

Abstract

In this paper we give a positive answer to the conjecture proposed in [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39] by El Soufi et al. concerning the finite time blow-up for solutions of the problem (1), (2) below. More precisely, we give a direct proof of [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39, Theorem 1.1] and the conjecture given for the case .

Résumé

Dans cet article on donne une réponse positive à la conjecture proposeé dans [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39] par El Soufi et al. concernant l'explosion en temps fini des solutions du problème (1), (2) ci-dessous. Plus précisément, on donne une preuve directe du [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39, Theorem 1.1] ainsi que la conjecture énoncée pour le cas .

Cite this article

R. Kiwan, M. Jazar, Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 2, pp. 215–218

DOI 10.1016/J.ANIHPC.2006.12.002