Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
R. Kiwan
Laboratoire de Mathématiques et Physique Théorique, Université de Tours, UMR 6083 du CNRS, Parc de Grandmont, 37200 Tours, FranceM. Jazar
Mathematics department, Lebanese University, P.O. Box 826, Tripoli, Lebanon
Abstract
In this paper we give a positive answer to the conjecture proposed in [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39] by El Soufi et al. concerning the finite time blow-up for solutions of the problem (1), (2) below. More precisely, we give a direct proof of [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39, Theorem 1.1] and the conjecture given for the case .
Résumé
Dans cet article on donne une réponse positive à la conjecture proposeé dans [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39] par El Soufi et al. concernant l'explosion en temps fini des solutions du problème (1), (2) ci-dessous. Plus précisément, on donne une preuve directe du [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39, Theorem 1.1] ainsi que la conjecture énoncée pour le cas .
Cite this article
R. Kiwan, M. Jazar, Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 2, pp. 215–218
DOI 10.1016/J.ANIHPC.2006.12.002