Point interactions for 3D sub-Laplacians
Ugo Boscain
CNRS, Sorbonne Université, Inria, Université de Paris, Laboratoire Jacques-Louis Lions, Paris, FranceValentina Franceschi
Dipartimento di Matematica Tullio Levi-Civita, Università degli Studi di Padova, via Trieste 63, 35131 Padova, ItalyDario Prandi
Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, 91190, Gif-sur-Yvette, FranceRiccardo Adami
Politecnico di Torino, Dipartimento di Scienze Matematiche “G.L. Lagrange”, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
Abstract
In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on is essentially self-adjoint in . A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on is never essentially self-adjoint in , if . We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.
Cite this article
Ugo Boscain, Valentina Franceschi, Dario Prandi, Riccardo Adami, Point interactions for 3D sub-Laplacians. Ann. Inst. H. Poincaré Anal. Non Linéaire 38 (2021), no. 4, pp. 1095–1113
DOI 10.1016/J.ANIHPC.2020.10.007