Parabolic equations and the bounded slope condition
Frank Duzaar
Department Mathematik, Universität Erlangen–Nürnberg, Cauerstrasse 11, 91058 Erlangen, GermanyPaolo Marcellini
Dipartimento di Matematica e Informatica “U.Dini”, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, ItalyStefano Signoriello
Department Mathematik, Universität Erlangen–Nürnberg, Cauerstrasse 11, 91058 Erlangen, GermanyVerena Bögelein
Fachbereich Mathematik, Universität Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
Abstract
In this paper we establish the existence of Lipschitz-continuous solutions to the Cauchy Dirichlet problem of evolutionary partial differential equations
The only assumptions needed are the convexity of the generating function , and the classical bounded slope condition on the initial and the lateral boundary datum . We emphasize that no growth conditions are assumed on and that – an example which does not enter in the elliptic case could be any Lipschitz initial and boundary datum, vanishing at the boundary , and the boundary may contain flat parts, for instance could be a rectangle in .
Cite this article
Frank Duzaar, Paolo Marcellini, Stefano Signoriello, Verena Bögelein, Parabolic equations and the bounded slope condition. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 2, pp. 355–379
DOI 10.1016/J.ANIHPC.2015.12.005