Exact controllability for semilinear wave equations in one space dimension
E. Zuazua
Departamento de Matemática Aplicada, Universidad Complutense, 28040 Madrid, Spain
Abstract
The exact controllability of the semilinear wave equation in one space dimension with Dirichlet boundary conditions is studied. We prove that if as , then the exact controllability holds in with controls supported in any open and non empty subset of . The exact controllability time is that of the linear case where . Our method of proof is based on HUM (Hilbert Uniqueness Method) and on a fixed point technique. We also show that this result is almost optimal by proving that if behaves like with as , then the system is not exactly controllable. This is due to blow-up phenomena. The method of proof is rather general and applied also to the wave equation with Neumann type boundary conditions.
Résumé
On démontre la contrôlabilité exacte de l’équation des ondes semi-linéaire à une dimension d’espace pour des nonlinéarités que satisfont lorsque . La méthode de démonstration combine HUM et une technique de point fixe. En utilisant des arguments d’explosion on démontre que la condition de croissance imposée à la nonlinéarité est presque optimale.
Cite this article
E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), no. 1, pp. 109–129
DOI 10.1016/S0294-1449(16)30221-9