Partial regularity results up to the boundary for harmonic maps into a Finsler manifold
Atsushi Tachikawa
Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
Abstract
We study the energy functional for maps from a Riemannian -manifold into a Finsler space . Under the restriction , we prove the full Hölder regularity of weakly harmonic maps (i.e., weak solutions of its Euler–Lagrange equation) from to in the case that the Finsler structure depends only on vectors , and a partial Hölder regularity of energy minimizing maps in general cases.
Résumé
Nous étudions la fonctionnelle d'énergie pour les applications d'une variété riemannienne dans un espace de Finsler . Sous la restriction , nous prouvons la régularité de Hölder complète des applications faiblement harmoniques (i.e. solutions faibles de son équation d'Euler–Lagrange) de à dans le cas où la structure de Finsler dépend seulement des vecteurs , et nous prouvons une régularité de Hölder partielle des minimiseurs de l'énergie dans le cas général.
Cite this article
Atsushi Tachikawa, Partial regularity results up to the boundary for harmonic maps into a Finsler manifold. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 5, pp. 1953–1970
DOI 10.1016/J.ANIHPC.2009.05.001