Permutation groups, minimal degrees and quantum computing

  • Julia Kempe

    Tel Aviv University, Israel
  • László Pyber

    Hungarian Academy of Sciences, Budapest, Hungary
  • Aner Shalev

    The Hebrew University of Jerusalem, Israel


We study permutation groups of given minimal degree without the classical primitivity assumption. We provide sharp upper bounds on the order of a permutation group H ≤ Sn of minimal degree m and on the number of its elements of any given support. These results contribute to the foundations of a non-commutative coding theory.

A main application of our results concerns the Hidden Subgroup Problem for Sn in quantum computing. We completely characterize the hidden subgroups of Sn that can be distinguished from identity with weak Quantum Fourier Sampling, showing that these are exactly the subgroups with bounded minimal degree. This implies that the weak standard method for Sn has no advantage whatsoever over classical exhaustive search.

Cite this article

Julia Kempe, László Pyber, Aner Shalev, Permutation groups, minimal degrees and quantum computing. Groups Geom. Dyn. 1 (2007), no. 4, pp. 553–584

DOI 10.4171/GGD/24