# Linear progress with exponential decay in weakly hyperbolic groups

### Matthew H. Sunderland

CUNY College of Staten Island, USA

## Abstract

A random walk $w_{n}$ on a separable, geodesic hyperbolic metric space $X$ converges to the boundary $∂X$ with probability one when the step distribution supports two independent loxodromics. In particular, the random walk makes positive linear progress. Progress is known to be linear with exponential decay when (1) the step distribution has exponential tail and (2) the action on $X$ is acylindrical.

## Cite this article

Matthew H. Sunderland, Linear progress with exponential decay in weakly hyperbolic groups. Groups Geom. Dyn. 14 (2020), no. 2, pp. 539–566

DOI 10.4171/GGD/554