• Contact
  • Submissions
  • About
  • Updates
  • Journals
  • Books
  • Subscribe To Open
    • Authors
    • Libraries
    • Booksellers
JournalsggdVol. 9, No. 1

Groups, Geometry, and Dynamics

Volume 9, No. 1 (2015)

Groups Geom. Dyn. cover

  • pp. 1–27

    Multiple conjugacy problem in graphs of free abelian groups

    Benjamin Beeker

  • pp. 29–53

    On the growth of Hermitian groups

    Rui Palma

  • pp. 55–65

    Graphs and two-step nilpotent Lie algebras

    Meera G. Mainkar

  • pp. 67–101

    Vanishing of cohomology and property (T) for groups acting on weighted simplicial complexes

    Izhar Oppenheim

  • pp. 103–131

    Arrangements of hypersurfaces and Bestvina–Brady groups

    Enrique Artal BartoloJosé Ignacio Cogolludo-AgustínDaniel Matei

  • pp. 133–148

    Superrigidity in infinite dimension and finite rank via harmonic maps

    Bruno Duchesne

  • pp. 149–185

    Dynamics on PSL(2, C\mathbb CC)-character varieties: 3-manifolds with toroidal boundary components

    Richard D. CanaryAaron D. Magid

  • pp. 187–201

    Dynamics on the PSL(2, C\mathbb CC)-character variety of a twisted III-bundle

    Michelle Lee

  • pp. 203–235

    Stability in orbit equivalence for Baumslag–Solitar groups and Vaes groups

    Yoshikata Kida

  • pp. 237–273

    Relative subgroup growth and subgroup distortion

    Tara C. DavisAlexander Yu. Olshanskii

  • pp. 275–316

    Right-angled Artin groups and Out(Fn\mathbb F_nFn​) – I. Quasi-isometric embeddings

    Samuel J. Taylor

  • pp. 317–323

    Groups with infinitely many ends are not fraction groups

    Dawid Kielak

  • pp. 325–329

    Thompson's group FFF is not SCY

    Stefan FriedlStefano Vidussi

Publication Date

28 April 2015

Identifiers

DOI Prefix
10.4171/GGD
ISSN print
1661-7207
ISSN digital
1661-7215
  • Contact
  • Legal Notice
  • Privacy Policy
  • Accessibility Statement

© 2022 EMS Press
EMS Press is an imprint of the European Mathematical Society - EMS - Publishing House GmbH,
a subsidiary of the European Mathematical Society.