On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model

  • Luigi Ambrosio

    Scuola Normale Superiore, Pisa, Italy
  • Piero Colli Franzone

    Università di Pavia, Italy
  • Giuseppe Savaré

    Università di Pavia, Italy

Abstract

We study the -convergence of a family of vectorial integral functionals, which are the sum of a vanishing anisotropic quadratic form in the gradients and a penalizing double-well potential depending only on a linear combination of the components of their argument. This particular feature arises from the study of the so-called ‘bidomain model’ for the cardiac electric field; one of its consequences is that the -norm of a minimizing sequence can be unbounded and therefore a lack of coercivity occurs. We characterize the -limit as a surface integral functional, whose integrand is a convex function of the normal and can be computed by solving a localized minimization problem.

Cite this article

Luigi Ambrosio, Piero Colli Franzone, Giuseppe Savaré, On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model. Interfaces Free Bound. 2 (2000), no. 3, pp. 213–266

DOI 10.4171/IFB/19