Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem

  • Xiaobing Feng

    University of Tennessee, Knoxville, USA
  • Andreas Prohl

    Universität Tübingen, Germany

Abstract

This paper concerns numerical approximations for the Cahn–Hilliard equation and its sharp interface limit as , known as the Hele–Shaw problem. The primary goal of this paper is to establish the convergence of the solution of the fully discrete mixed finite element scheme proposed in [29] to the solution of the Hele–Shaw (Mullins–Sekerka) problem, provided that the Hele–Shaw (Mullins–Sekerka) problem has a global (in time) classical solution. This is accomplished by establishing some improved a priori solution and error estimates, in particular, an -error estimate, and making full use of the convergence result of [2]. The cruxes of the analysis are to establish stability estimates for the discrete solutions, use a spectrum estimate result of Alikakos and Fusco [3] and Chen [15], and establish a discrete counterpart of it for a linearized Cahn–Hilliard operator to handle the nonlinear term.

Cite this article

Xiaobing Feng, Andreas Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem. Interfaces Free Bound. 7 (2005), no. 1, pp. 1–28

DOI 10.4171/IFB/111