Division rings for group algebras of virtually compact special groups and -manifold groups
Sam P. Fisher
University of Oxford, Oxford, UKPablo Sánchez-Peralta
Universidad Autónoma de Madrid, Madrid, Spain
Abstract
Let be a division ring and let be either a torsion-free virtually compact special group or a finitely generated torsion-free -manifold group. We embed the group algebra in a division ring and prove that the embedding is Hughes-free whenever is locally indicable. In particular, we prove that Kaplansky’s Zero Divisor Conjecture holds for all group algebras of torsion-free -manifold groups. The embedding is also used to confirm a conjecture of Kielak and Linton. Thanks to the work of Jaikin-Zapirain and Linton, another consequence of the embedding is that is coherent whenever is a virtually compact special one-relator group. If is a torsion-free one-relator group, let be the division ring containing constructed by Lewin and Lewin. We prove that is Hughes-free whenever a Hughes-free -division ring exists. This is always the case when is of characteristic zero; in positive characteristic, our previous result implies that this happens when is virtually compact special.
Cite this article
Sam P. Fisher, Pablo Sánchez-Peralta, Division rings for group algebras of virtually compact special groups and -manifold groups. J. Comb. Algebra (2024), published online first
DOI 10.4171/JCA/89