Lefschetz and Hirzebruch–Riemann–Roch formulas via noncommutative motives
Denis-Charles Cisinski
Université Paul Sabatier, Toulouse, FranceGonçalo Tabuada
Massachusetts Institute of Technology, Cambridge, USA
Abstract
V. Lunts has recently established Lefschetz fixed point theorems for Fourier–Mukai functors and dg algebras. In the same vein, D. Shklyarov introduced the noncommutative analogue of the Hirzebruch–Riemman–Roch theorem. In this article, we see how these constructions and computations formally stem from their motivic counterparts.
Cite this article
Denis-Charles Cisinski, Gonçalo Tabuada, Lefschetz and Hirzebruch–Riemann–Roch formulas via noncommutative motives. J. Noncommut. Geom. 8 (2014), no. 4, pp. 1171–1190
DOI 10.4171/JNCG/183