Relatively hyperbolic groups, rapid decay algebras, and a generalization of the Bass conjecture

  • Ronghui Ji

    IUPUI, Indianapolis, IN
  • Crichton Ogle

    OSU, Columbus, OH
  • Bobby W. Ramsey

    IUPUI, Indianapolis, IN

Abstract

By deploying dense subalgebras of we generalize the Bass conjecture in terms of Connes’ cyclic homology theory. In particular, we propose a stronger version of the -Bass Conjecture. We prove that hyperbolic groups relative to finitely many subgroups, each of which posses the polynomial conjugacy bound property and nilpotent periodicity property, satisfy the -Stronger–Bass Conjecture. Moreover, we determine the conjugacy bound for relatively hyperbolic groups and compute the cyclic cohomology of the -algebra of any discrete group.

Cite this article

Ronghui Ji, Crichton Ogle, Bobby W. Ramsey, Relatively hyperbolic groups, rapid decay algebras, and a generalization of the Bass conjecture. J. Noncommut. Geom. 4 (2010), no. 1, pp. 83–124

DOI 10.4171/JNCG/50