Representation Theory of Quivers and Finite Dimensional Algebras
William Crawley-Boevey
University of Leeds, UKBernhard Keller
Université Paris Diderot - Paris 7, FranceHenning Krause
Universität Bielefeld, GermanyOeyvind Solberg
University of Trondheim, Norway
Abstract
Methods and results from the representation theory of quivers and finite dimensional algebras have led to many interactions with other areas of mathematics. Such areas include the theory of Lie algebras and quantum groups, commutative algebra, algebraic geometry and topology, and in particular the new theory of cluster algebras. The aim of this workshop was to further develop such interactions and to stimulate progress in the representation theory of algebras.
Cite this article
William Crawley-Boevey, Bernhard Keller, Henning Krause, Oeyvind Solberg, Representation Theory of Quivers and Finite Dimensional Algebras. Oberwolfach Rep. 8 (2011), no. 1, pp. 523–608
DOI 10.4171/OWR/2011/10