Yano's Conjecture for Two-Puiseux-Pair Irreducible Plane Curve Singularities
Enrique Artal Bartolo
Universidad de Zaragoza, SpainPierrette Cassou-Noguès
Université de Bordeaux I, FranceIgnacio Luengo
Universidad Complutense de Madrid, SpainAlejandro Melle-Hernández
Universidad Complutense de Madrid, Spain
Abstract
In 1982, Tamaki Yano proposed a conjecture predicting the -exponents of an irreducible plane curve singularity germ that is generic in its equisingularity class. In this article, we prove the conjecture for the case in which the irreducible germ has two Puiseux pairs and its algebraic monodromy has distinct eigenvalues. This hypothesis on the monodromy implies that the -exponents coincide with the opposite of the roots of the Bernstein polynomial, and we compute the roots of the Bernstein polynomial.
Cite this article
Enrique Artal Bartolo, Pierrette Cassou-Noguès, Ignacio Luengo, Alejandro Melle-Hernández, Yano's Conjecture for Two-Puiseux-Pair Irreducible Plane Curve Singularities. Publ. Res. Inst. Math. Sci. 53 (2017), no. 1, pp. 211–239
DOI 10.4171/PRIMS/53-1-7