The Mumford-Tate Conjecture for Drinfeld-Modules

  • Richard Pink

    ETH Zürich, Switzerland

Abstract

Consider the Galois representation on the Tate module of a Drinfeld module over a finitely generated field in generic characteristic. The main object of this paper is to determine the image of Galois in this representation, up to commensurability. We also determine the Dirichlet density of the set of places of prescribed reduction type, such as places of ordinary reduction.

Cite this article

Richard Pink, The Mumford-Tate Conjecture for Drinfeld-Modules. Publ. Res. Inst. Math. Sci. 33 (1997), no. 3, pp. 393–425

DOI 10.2977/PRIMS/1195145322