# Intersection Homology <i>D</i>-Module and Bernstein Polynomials Associated with a Complete Intersection

### Tristan Torrelli

Université Henri Poincaré, Vandoeuvre lès Nancy, France

## Abstract

Let *X* be a complex analytic manifold. Given a closed subspace *Y* ⊂ *X* of pure codimension *p* ≥ 1, we consider the sheaf of local algebraic cohomology *Hp*[Y](*OX*), and *L*(*Y*,*X*)⊂ *Hp*[Y ](*OX*) the intersection homology *DX*-Module of Brylinski-Kashiwara. We give here an algebraic characterization of the spaces *Y* such that *L*(*Y*,*X*) coincides with *Hp*[Y](*OX*), in terms of Bernstein-Sato functional equations.

## Cite this article

Tristan Torrelli, Intersection Homology <i>D</i>-Module and Bernstein Polynomials Associated with a Complete Intersection. Publ. Res. Inst. Math. Sci. 45 (2009), no. 2, pp. 645–660

DOI 10.2977/PRIMS/1241553132