On curvature and the bilinear multiplier problem
S. Zubin Gautam
Indiana University, Bloomington, USA
![On curvature and the bilinear multiplier problem cover](/_next/image?url=https%3A%2F%2Fcontent.ems.press%2Fassets%2Fpublic%2Fimages%2Fserial-issues%2Fcover-rmi-volume-28-issue-2.png&w=3840&q=90)
Abstract
We provide sufficient normal curvature conditions on the boundary of a domain to guarantee unboundedness of the bilinear Fourier multiplier operator with symbol outside the local setting, i.e., from with and for some . In particular, these curvature conditions are satisfied by any domain that is locally strictly convex at a single boundary point.
Cite this article
S. Zubin Gautam, On curvature and the bilinear multiplier problem. Rev. Mat. Iberoam. 28 (2012), no. 2, pp. 351–369
DOI 10.4171/RMI/680