Minimal semiinjective resolutions in the -shaped derived category
Henrik Holm
University of Copenhagen, DenmarkPeter Jørgensen
Aarhus University, Aarhus C, Denmark

Abstract
Semiinjective resolutions of chain complexes are used for the computation of spaces in the derived category of a ring . Minimal semiinjective resolutions have the additional property of being unique. The -shaped derived category consists of -shaped diagrams for a suitable preadditive category , and it generalises . Some special cases of are the derived categories of differential modules, -periodic chain complexes, and -complexes, and there are many other possibilities. The category shares some key properties of ; for instance, it is triangulated and compactly generated. This paper establishes a theory of minimal semiinjective resolutions in . As a sample application, it generalises a theorem by Ringel and Zhang on differential modules.
Cite this article
Henrik Holm, Peter Jørgensen, Minimal semiinjective resolutions in the -shaped derived category. Rev. Mat. Iberoam. (2025), published online first
DOI 10.4171/RMI/1579