Remarks on the construction of sets associated to trees not satisfying a separation condition
Paul Hagelstein
Baylor University, Waco, USABlanca Radillo-Murguia
Baylor University, Waco, USAAlexander Stokolos
Georgia Southern University, Statesboro, USA

Abstract
sets involving sticky maps have been used in the theory of differentiation of integrals to probabilistically construct Kakeya-type sets that imply certain types of directional maximal operators are unbounded on for all . We indicate limits to this approach by showing that, given and a natural number , there exists a tree of finite height that is lacunary of order but such that, for every sticky map , one has .
Cite this article
Paul Hagelstein, Blanca Radillo-Murguia, Alexander Stokolos, Remarks on the construction of sets associated to trees not satisfying a separation condition. Rev. Mat. Iberoam. (2025), published online first
DOI 10.4171/RMI/1581