The Poincaré half-space of a C-algebra
Esteban Andruchow
Universidad Nacional de General Sarmiento, Los Polvorines, Argentina and Instituto Argentino de Matemática, Buenos AiresGustavo Corach
Instituto Argentino de Matemáticas and Universidad de Buenos Aires, ArgentinaLázaro Recht
Universidad Simón Bolívar, Caracas, Venezuela
Abstract
Let be a unital C-algebra. Given a faithful representation in a Hilbert space , the set of positive invertible elements can be thought of as the set of inner products in , related to , which are equivalent to the original inner product. The set has a rich geometry, it is a homogeneous space of the invertible group of , with an invariant Finsler metric. In the present paper we study the tangent bundle of , as a homogeneous Finsler space of a natural group of invertible matrices in , identifying with the Poincaré half-space of ,
We show that has properties similar to those of a space of non-positive constant curvature.
Cite this article
Esteban Andruchow, Gustavo Corach, Lázaro Recht, The Poincaré half-space of a C-algebra. Rev. Mat. Iberoam. 35 (2019), no. 7, pp. 2187–2219
DOI 10.4171/RMI/1117