On a Pólya functional for rhombi, isosceles triangles, and thinning convex sets
Michiel van den Berg
University of Bristol, UKVincenzo Ferone
Università degli Studi di Napoli Federico II, ItalyCarlo Nitsch
Università degli Studi di Napoli Federico II, ItalyCristina Trombetti
Università degli Studi di Napoli Federico II, Italy
Abstract
Let be an open convex set in with finite width, and with boundary . Let be the torsion function for , i.e., the solution of . An upper bound is obtained for the product of , where is the bottom of the spectrum of the Dirichlet Laplacian acting in . The upper bound is sharp in the limit of a thinning sequence of convex sets. For planar rhombi and isosceles triangles with area , it is shown that , and that this bound is sharp.
Cite this article
Michiel van den Berg, Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti, On a Pólya functional for rhombi, isosceles triangles, and thinning convex sets. Rev. Mat. Iberoam. 36 (2020), no. 7, pp. 2091–2105
DOI 10.4171/RMI/1192