Dynamics of shift operators on non-metrizable sequence spaces
José Bonet
Universitat Politècnica de València, SpainThomas Kalmes
Technische Universität Chemnitz, GermanyAlfredo Peris
Universidad Politècnia de València, Spain
Abstract
We investigate dynamical properties such as topological transitivity, (sequential) hypercyclicity, and chaos for backward shift operators associated to a Schauder basis on LF-spaces. As an application, we characterize these dynamical properties for weighted generalized backward shifts on Köthe coechelon sequence spaces in terms of the defining sequence of weights . We further discuss several examples and show that the annihilation operator from quantum mechanics is mixing, sequentially hypercyclic, chaotic, and topologically ergodic on .
Cite this article
José Bonet, Thomas Kalmes, Alfredo Peris, Dynamics of shift operators on non-metrizable sequence spaces. Rev. Mat. Iberoam. 37 (2021), no. 6, pp. 2373–2397
DOI 10.4171/RMI/1267