# Global infinite energy solutions of the critical semilinear wave equation

### Pierre Germain

New York University, USA

## Abstract

We consider the critical semilinear wave equation

set in $\mathbb{R}^d$, $d \geq 3$, with $2^* = \frac{2d}{d-2} \,\cdotp$ Shatah and Struwe [Shatah, J. and Struwe, M.: Geometric wave equations. Courant Lecture Notes in Mathematics 2. New York University, Courant Institute of Mathematical Sciences. American Mathematical Society, RI, 1998] proved that, for finite energy initial data (ie if $(u_0,u_1) \in \dot{H}^1 \times L^2$), there exists a global solution such that $(u,\partial_t u)\in \mathcal{C}(\mathbb{R},\dot{H}^1 \times L^2)$. Planchon [Planchon, F.: Self-similar solutions and semi-linear wave equations in Besov spaces. J. Math. Pures Appl. (9) 79 (2000), no. 8, 809-820] showed that there also exists a global solution for certain infinite energy initial data, namely, if the norm of $(u_0,u_1)$ in $\dot{B}^1_{2,\infty} \times \dot{B}^0_{2,\infty}$ is small enough. In this article, we build up global solutions of $(NLW)_{2^*-1}$ for arbitrarily big initial data of infinite energy, by using two methods which enable to interpolate between finite and infinite energy initial data: the method of Calderón, and the method of Bourgain. These two methods give complementary results.

## Cite this article

Pierre Germain, Global infinite energy solutions of the critical semilinear wave equation. Rev. Mat. Iberoam. 24 (2008), no. 2, pp. 463–497

DOI 10.4171/RMI/543