Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates

  • José A. Carrillo

    Imperial College London, UK
  • Robert J. McCann

    University of Toronto, Canada
  • Cédric Villani

    École Normale Supérieure de Lyon, France

Abstract

The long-time asymptotics of certain nonlinear, nonlocal, diffusive equations with a gradient flow structure are analyzed. In particular, a result of Benedetto, Caglioti, Carrillo and Pulvirenti [BCCP98] guaranteeing eventual relaxation to equilibrium velocities in a spatially homogeneous model of granular flow is extended and quantified by computing explicit relaxation rates. Our arguments rely on establishing generalizations of logarithmic Sobolev inequalities and mass transportation inequalities, via either the Bakry-Emery method or the abstract approach of Otto and Villani [OV00].

Cite this article

José A. Carrillo, Robert J. McCann, Cédric Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19 (2003), no. 3, pp. 971–1018

DOI 10.4171/RMI/376