JournalsrsmupVol. 120pp. 73–77

Automorphisms Fixing Every Normal Subgroup of a Nilpotent-by-Abelian Group

  • Gérard Endimioni

    Université de Provence, Marseille, France
Automorphisms Fixing Every Normal Subgroup of a Nilpotent-by-Abelian Group cover
Download PDF

Abstract

Among other things, we prove that the group of automorphisms fixing every normal subgroup of a (nilpotent of class c)-by-abelian group is (nilpotent of class ≤ c)-by-metabelian. In particular, the group of automorphisms fixing every normal subgroup of a metabelian group is soluble of derived length at most 3. An example shows that this bound cannot be improved.

Cite this article

Gérard Endimioni, Automorphisms Fixing Every Normal Subgroup of a Nilpotent-by-Abelian Group. Rend. Sem. Mat. Univ. Padova 120 (2008), pp. 73–77

DOI 10.4171/RSMUP/120-5