Centralizers of finite subgroups in Hall’s universal group
Otto H. Kegel
Universität Freiburg, GermanyMahmut Kuzucuoğlu
Middle East Technical University, Ankara, Turkey
Abstract
The structure of the centralizers of elements and finite abelian subgroups in Hall's universal group is studied by B. Hartley by using the property of existential closed structure of Hall’s universal group in the class of locally finite groups. The structure of the centralizers of arbitrary finite subgroups were an open question for a long time. Here by using basic group theory and the construction of P. Hall we give a complete description of the structure of centralizers of arbitrary finite subgroups in Hall's universal group. Namely we prove the following. Let be the Hall's universal group and be a finite subgroup of .Then the centralizer is isomorphic to an extention of by .
Cite this article
Otto H. Kegel, Mahmut Kuzucuoğlu, Centralizers of finite subgroups in Hall’s universal group. Rend. Sem. Mat. Univ. Padova 138 (2017), pp. 283–288
DOI 10.4171/RSMUP/138-15