Hausdorff and Fractal Dimension Estimates for Invariant Sets of Non-Injective Maps

  • V.A. Boichenko

    St. Petersburg State University, Russian Federation
  • A. Franz

    Technische Universität Dresden, Germany
  • G.A. Leonov

    St. Petersburg State University, Russian Federation
  • Volker Reitmann

    Technische Universität Dresden, Germany

Abstract

In this paper we are concerned with upper bounds for the Hausdorff and fractal dimensions of negatively invariant sets of maps on Riemannian manifolds. We consider a special class of non-injective maps, for which we introduce a factor describing the "degree of non-injectivity". This factor can be included in the Hausdorif dimension estimates of Douady-Oesterlé type [2, 7, 10] and in fractal dimension estimates [5, 13, 15] in order to weaken the condition to the singular values of the tangent map. In a number of cases we get better upper dimension estimates.

Cite this article

V.A. Boichenko, A. Franz, G.A. Leonov, Volker Reitmann, Hausdorff and Fractal Dimension Estimates for Invariant Sets of Non-Injective Maps. Z. Anal. Anwend. 17 (1998), no. 1, pp. 207–223

DOI 10.4171/ZAA/816