Hausdorff and Fractal Dimension Estimates for Invariant Sets of Non-Injective Maps
V.A. Boichenko
St. Petersburg State University, Russian FederationA. Franz
Technische Universität Dresden, GermanyG.A. Leonov
St. Petersburg State University, Russian FederationVolker Reitmann
Technische Universität Dresden, Germany
![Hausdorff and Fractal Dimension Estimates for Invariant Sets of Non-Injective Maps cover](/_next/image?url=https%3A%2F%2Fcontent.ems.press%2Fassets%2Fpublic%2Fimages%2Fserial-issues%2Fcover-zaa-volume-17-issue-1.png&w=3840&q=90)
Abstract
In this paper we are concerned with upper bounds for the Hausdorff and fractal dimensions of negatively invariant sets of maps on Riemannian manifolds. We consider a special class of non-injective maps, for which we introduce a factor describing the "degree of non-injectivity". This factor can be included in the Hausdorif dimension estimates of Douady-Oesterlé type [2, 7, 10] and in fractal dimension estimates [5, 13, 15] in order to weaken the condition to the singular values of the tangent map. In a number of cases we get better upper dimension estimates.
Cite this article
V.A. Boichenko, A. Franz, G.A. Leonov, Volker Reitmann, Hausdorff and Fractal Dimension Estimates for Invariant Sets of Non-Injective Maps. Z. Anal. Anwend. 17 (1998), no. 1, pp. 207–223
DOI 10.4171/ZAA/816