On Continuous Capacities

  • M. Brzezina

    Universität Erlangen-Nürnberg, Germany

Abstract

Let be a balayage space, a Choquet capacity on , the essential base of and, for a compact set . Then some properties of the set function are investigated. In particular, it is shown when is the Choquet capacity. Further, some relation a to the so-called continuous capacity deduced from a kernel on is given. At last, some open problems from the book [1] by G. Anger are solved.

Cite this article

M. Brzezina, On Continuous Capacities. Z. Anal. Anwend. 14 (1995), no. 2, pp. 213–224

DOI 10.4171/ZAA/671